IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v309y2024ics0360544224028366.html
   My bibliography  Save this article

Experimental investigation on the oil extraction process for a novel underground oil storage method: Oil storage in salt cavern insoluble sediment voids

Author

Listed:
  • Wei, Xinxing
  • Shi, Xilin
  • Ma, Hongling
  • Ban, Shengnan
  • Bai, Weizheng

Abstract

Large-scale underground oil storage is vital for addressing the energy crisis. Leveraging the insoluble sediment space at the bottoms of salt caverns for oil storage is particularly effective in high-impurity salt mines, enhancing oil storage capacity. The process of extracting oil from the sediment void is essential for utilizing this resource. Three experimental devices were developed to investigate this extraction process. We conducted experiments on oil extraction processes and rates for various oil types, analyzing weight changes and influencing factors. The sediment and water content in the extracted oil were also evaluated. Results indicated that extracting oil from the sediment void is feasible, yielding average recovery rates over 90.0 %. High-viscosity oil at 50 °C exhibited three stages: initial stability, a rapid rise, and final stability. Low-viscosity oil correlated with brine injection rates, displaying a rapid rise, stable phase, and subsequent decline. Petrolatum extraction was easier than diesel extraction, and ground temperature improved recovery rates. Changes in water and sediment content had minimal impact on oil quality. This research provides insights for large-scale underground energy storage.

Suggested Citation

  • Wei, Xinxing & Shi, Xilin & Ma, Hongling & Ban, Shengnan & Bai, Weizheng, 2024. "Experimental investigation on the oil extraction process for a novel underground oil storage method: Oil storage in salt cavern insoluble sediment voids," Energy, Elsevier, vol. 309(C).
  • Handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028366
    DOI: 10.1016/j.energy.2024.133061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224028366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.