IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v309y2024ics0360544224028366.html
   My bibliography  Save this article

Experimental investigation on the oil extraction process for a novel underground oil storage method: Oil storage in salt cavern insoluble sediment voids

Author

Listed:
  • Wei, Xinxing
  • Shi, Xilin
  • Ma, Hongling
  • Ban, Shengnan
  • Bai, Weizheng

Abstract

Large-scale underground oil storage is vital for addressing the energy crisis. Leveraging the insoluble sediment space at the bottoms of salt caverns for oil storage is particularly effective in high-impurity salt mines, enhancing oil storage capacity. The process of extracting oil from the sediment void is essential for utilizing this resource. Three experimental devices were developed to investigate this extraction process. We conducted experiments on oil extraction processes and rates for various oil types, analyzing weight changes and influencing factors. The sediment and water content in the extracted oil were also evaluated. Results indicated that extracting oil from the sediment void is feasible, yielding average recovery rates over 90.0 %. High-viscosity oil at 50 °C exhibited three stages: initial stability, a rapid rise, and final stability. Low-viscosity oil correlated with brine injection rates, displaying a rapid rise, stable phase, and subsequent decline. Petrolatum extraction was easier than diesel extraction, and ground temperature improved recovery rates. Changes in water and sediment content had minimal impact on oil quality. This research provides insights for large-scale underground energy storage.

Suggested Citation

  • Wei, Xinxing & Shi, Xilin & Ma, Hongling & Ban, Shengnan & Bai, Weizheng, 2024. "Experimental investigation on the oil extraction process for a novel underground oil storage method: Oil storage in salt cavern insoluble sediment voids," Energy, Elsevier, vol. 309(C).
  • Handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028366
    DOI: 10.1016/j.energy.2024.133061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224028366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Xinxing & Shi, Xilin & Li, Yinping & Li, Peng & Ban, Shengnan & Zhao, Kai & Ma, Hongling & Liu, Hejuan & Yang, Chunhe, 2023. "A comprehensive feasibility evaluation of salt cavern oil energy storage system in China," Applied Energy, Elsevier, vol. 351(C).
    2. Wei, Xinxing & Shi, Xilin & Li, Yinping & Liu, Hejuan & Li, Peng & Ban, Shengnan & Liang, Xiaopeng & Zhu, Shijie & Zhao, Kai & Yang, Kun & Huang, Si & Yang, Chunhe, 2023. "Advances in research on gas storage in sediment void of salt cavern in China," Energy, Elsevier, vol. 284(C).
    3. Nan Zhang & Wei Liu & Yun Zhang & Pengfei Shan & Xilin Shi, 2020. "Microscopic Pore Structure of Surrounding Rock for Underground Strategic Petroleum Reserve (SPR) Caverns in Bedded Rock Salt," Energies, MDPI, vol. 13(7), pages 1-22, March.
    4. Liang, Xiaopeng & Ma, Hongling & Cai, Rui & Zhao, Kai & Zeng, Zhen & Li, Hang & Yang, Chunhe, 2023. "Feasibility analysis of natural gas storage in the voids of sediment within salt cavern——A case study in China," Energy, Elsevier, vol. 285(C).
    5. Yang, Chunhe & Wang, Tongtao & Li, Yinping & Yang, Haijun & Li, Jianjun & Qu, Dan’an & Xu, Baocai & Yang, Yun & Daemen, J.J.K., 2015. "Feasibility analysis of using abandoned salt caverns for large-scale underground energy storage in China," Applied Energy, Elsevier, vol. 137(C), pages 467-481.
    6. Serdar zt rk & Ali S zdemir & zlem lger, 2013. "The Real Crisis Waiting for the World: Oil Problem and Energy Security," International Journal of Energy Economics and Policy, Econjournals, vol. 3(Special), pages 74-79.
    7. Li, Peng & Li, Yinping & Shi, Xilin & Zhao, Kai & Liang, Xiaopeng & Ma, Hongling & Yang, Chunhe & Liu, Kai, 2022. "Compaction and restraining effects of insoluble sediments in underground energy storage salt caverns," Energy, Elsevier, vol. 249(C).
    8. Zhang, Nan & Shi, Xilin & Wang, Tongtao & Yang, Chunhe & Liu, Wei & Ma, Hongling & Daemen, J.J.K., 2017. "Stability and availability evaluation of underground strategic petroleum reserve (SPR) caverns in bedded rock salt of Jintan, China," Energy, Elsevier, vol. 134(C), pages 504-514.
    9. Li, Hang & Ma, Hongling & Zhao, Kai & Zhu, Shijie & Yang, Kun & Zeng, Zhen & Zheng, Zhuyan & Yang, Chunhe, 2024. "Parameter design of the compressed air energy storage salt cavern in highly impure rock salt formations," Energy, Elsevier, vol. 286(C).
    10. Katz, James E., 1981. "The strategic petroleum reserve: Technology and policy implementation," Energy, Elsevier, vol. 6(9), pages 927-932.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinxing Wei & Xilin Shi & Yinping Li & Peng Li & Mingnan Xu & Yashuai Huang & Yang Hong, 2025. "A Review of Enhanced Methods for Oil Recovery from Sediment Void Oil Storage in Underground Salt Caverns," Energies, MDPI, vol. 18(2), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Xinxing & Shi, Xilin & Li, Yinping & Li, Peng & Ban, Shengnan & Zhao, Kai & Ma, Hongling & Liu, Hejuan & Yang, Chunhe, 2023. "A comprehensive feasibility evaluation of salt cavern oil energy storage system in China," Applied Energy, Elsevier, vol. 351(C).
    2. Xinxing Wei & Xilin Shi & Yinping Li & Peng Li & Mingnan Xu & Yashuai Huang & Yang Hong, 2025. "A Review of Enhanced Methods for Oil Recovery from Sediment Void Oil Storage in Underground Salt Caverns," Energies, MDPI, vol. 18(2), pages 1-25, January.
    3. Wei, Xinxing & Shi, Xilin & Li, Yinping & Liu, Hejuan & Li, Peng & Ban, Shengnan & Liang, Xiaopeng & Zhu, Shijie & Zhao, Kai & Yang, Kun & Huang, Si & Yang, Chunhe, 2023. "Advances in research on gas storage in sediment void of salt cavern in China," Energy, Elsevier, vol. 284(C).
    4. Liang, Xiaopeng & Ma, Hongling & Cai, Rui & Zhao, Kai & Zeng, Zhen & Li, Hang & Yang, Chunhe, 2023. "Feasibility analysis of natural gas storage in the voids of sediment within salt cavern——A case study in China," Energy, Elsevier, vol. 285(C).
    5. Li, Hang & Ma, Hongling & Liu, Jiang & Zhu, Shijie & Zhao, Kai & Zheng, Zhuyan & Zeng, Zhen & Yang, Chunhe, 2023. "Large-scale CAES in bedded rock salt: A case study in Jiangsu Province, China," Energy, Elsevier, vol. 281(C).
    6. Li, Jinlong & Zhang, Ning & Xu, Wenjie & Naumov, Dmitri & Fischer, Thomas & Chen, Yunmin & Zhuang, Duanyang & Nagel, Thomas, 2022. "The influence of cavern length on deformation and barrier integrity around horizontal energy storage salt caverns," Energy, Elsevier, vol. 244(PB).
    7. Li, Jinlong & Shi, Xilin & Zhang, Shuai, 2020. "Construction modeling and parameter optimization of multi-step horizontal energy storage salt caverns," Energy, Elsevier, vol. 203(C).
    8. Jingcui Li & Jifang Wan & Hangming Liu & Maria Jose Jurado & Yuxian He & Guangjie Yuan & Yan Xia, 2022. "Stability Analysis of a Typical Salt Cavern Gas Storage in the Jintan Area of China," Energies, MDPI, vol. 15(11), pages 1-15, June.
    9. Huiyong Song & Song Zhu & Jinlong Li & Zhuoteng Wang & Qingdong Li & Zexu Ning, 2023. "Design Criteria for the Construction of Energy Storage Salt Cavern Considering Economic Benefits and Resource Utilization," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    10. Zhang, Xiong & Liu, Wei & Chen, Jie & Jiang, Deyi & Fan, Jinyang & Daemen, J.J.K. & Qiao, Weibiao, 2022. "Large-scale CO2 disposal/storage in bedded rock salt caverns of China: An evaluation of safety and suitability," Energy, Elsevier, vol. 249(C).
    11. Lyu, Cheng & Dai, Hangyu & Ma, Chao & Zhou, Ping & Zhao, Chengxing & Xu, Deng & Zhang, Liangquan & Liang, Chao, 2024. "Prediction model for three-dimensional surface subsidence of salt cavern storage with different shapes," Energy, Elsevier, vol. 297(C).
    12. Liu, Wei & Zhang, Zhixin & Chen, Jie & Fan, Jinyang & Jiang, Deyi & Jjk, Daemen & Li, Yinping, 2019. "Physical simulation of construction and control of two butted-well horizontal cavern energy storage using large molded rock salt specimens," Energy, Elsevier, vol. 185(C), pages 682-694.
    13. Wang, Tongtao & Yang, Chunhe & Wang, Huimeng & Ding, Shuanglong & Daemen, J.J.K., 2018. "Debrining prediction of a salt cavern used for compressed air energy storage," Energy, Elsevier, vol. 147(C), pages 464-476.
    14. Jinlong, Li & Wenjie, Xu & Jianjing, Zheng & Wei, Liu & Xilin, Shi & Chunhe, Yang, 2020. "Modeling the mining of energy storage salt caverns using a structural dynamic mesh," Energy, Elsevier, vol. 193(C).
    15. Bohang Liu & Lei Wang & Yintong Guo & Jing Li & Hanzhi Yang, 2022. "Experimental Investigation on the Evolution of Tensile Mechanical Behavior of Cement Stone Considering the Variation of Burial Depth," Energies, MDPI, vol. 15(19), pages 1-16, October.
    16. Haitao Li & Jingen Deng & Qiqi Wanyan & Yongcun Feng & Arnaud Regis Kamgue Lenwoue & Chao Luo & Cheng Hui, 2021. "Numerical Investigation on Shape Optimization of Small-Spacing Twin-Well for Salt Cavern Gas Storage in Ultra-Deep Formation," Energies, MDPI, vol. 14(10), pages 1-22, May.
    17. Zhang, Weifeng & Ding, Jialu & Yin, Suzhen & Zhang, Fangyuan & Zhang, Yao & Liu, Zhan, 2024. "Thermo-economic optimization of an artificial cavern compressed air energy storage with CO2 pressure stabilizing unit," Energy, Elsevier, vol. 294(C).
    18. Lei Wang & Bohang Liu & Hanzhi Yang & Yintong Guo & Jing Li & Hejuan Liu, 2022. "Experimental Study on the Compressive and Shear Mechanical Properties of Cement–Formation Interface Considering Surface Roughness and Drilling Mud Contamination," Energies, MDPI, vol. 15(17), pages 1-17, September.
    19. Zhou, Yu & Xia, Caichu & Zhao, Haibin & Mei, Songhua & Zhou, Shuwei, 2018. "An iterative method for evaluating air leakage from unlined compressed air energy storage (CAES) caverns," Renewable Energy, Elsevier, vol. 120(C), pages 434-445.
    20. Xue, Tianfu & Shi, Xilin & Wang, Guibin & Liu, Xin & Wei, Xinxing & Ding, Shuanglong & Fu, Xinghui, 2024. "Study on repairing technical parameters of irregular gas storage salt caverns," Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.