IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i1p171-d1559781.html
   My bibliography  Save this article

Introduction to ORC–VCC Systems: A Review

Author

Listed:
  • Tomasz Suchocki

    (Centre of Heat and Power Engineering, Institute of Fluid Flow Machinery, Polish Academy of Sciences, 80-231 Gdańsk, Poland)

Abstract

The increasing demand for sustainable energy solutions has spurred significant interest in cogeneration technologies. This study introduces a novel integrated organic Rankine cycle (ORC) and vapor compression cycle (VCC) system, specifically designed to enhance energy efficiency and reduce greenhouse gas emissions in industrial applications and district heating systems. The key innovation lies in the development of an advanced coupling mechanism that seamlessly connects the ORC and VCC, enabling more efficient utilization of low-grade heat sources. By optimizing working fluid selection and implementing a shared shaft connection between the ORC turbine and VCC compressor, the system achieves dual functionality—simultaneous electricity generation and cooling—with higher efficiency than conventional methods. Thermodynamic analyses and experimental results demonstrate that the proposed ORC–VCC system can significantly reduce operational costs and decrease reliance on fossil fuels by leveraging renewable energy sources and industrial waste heat. Additionally, the study addresses integration challenges by introducing specialized components and a modular design approach that simplifies installation and maintenance. This innovative system not only enhances performance but also offers scalability for various industrial applications. By providing a detailed evaluation of the ORC–VCC integration and its practical implications, this work underscores the system’s potential to contribute substantially to a sustainable energy transition. The findings offer valuable insights for future research and development, highlighting pathways to overcome existing barriers in cogeneration technologies.

Suggested Citation

  • Tomasz Suchocki, 2025. "Introduction to ORC–VCC Systems: A Review," Energies, MDPI, vol. 18(1), pages 1-43, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:1:p:171-:d:1559781
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/171/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/171/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammadi, Zahra & Fallah, Mohsen, 2023. "Conventional and advanced exergy investigation of a double flash cycle integrated by absorption cooling, ORC, and TEG power system driven by geothermal energy," Energy, Elsevier, vol. 282(C).
    2. Ziviani, Davide & Beyene, Asfaw & Venturini, Mauro, 2014. "Advances and challenges in ORC systems modeling for low grade thermal energy recovery," Applied Energy, Elsevier, vol. 121(C), pages 79-95.
    3. Kalina, Jacek & Świerzewski, Mateusz, 2019. "Identification of ORC unit operation in biomass-fired cogeneration system," Renewable Energy, Elsevier, vol. 142(C), pages 400-414.
    4. Fahim Ullah & Min Kang, 2019. "Performance evaluation of parabolic trough solar collector with solar tracking tilt sensor for water distillation," Energy & Environment, , vol. 30(7), pages 1219-1235, November.
    5. Zhao, Xinyu & Yang, Sheng & Liu, Zhanjun & Wang, Deqiang & Du, Zengzhi & Ren, Jingzheng, 2024. "Optimization and exergoeconomic analysis of a solar-powered ORC-VCR-CCHP system based on a ternary refrigerant selection model," Energy, Elsevier, vol. 290(C).
    6. He, W.F. & Ji, C. & Han, D. & Wu, Y.K. & Huang, L. & Zhang, X.K., 2017. "Performance analysis of the mechanical vapor compression desalination system driven by an organic Rankine cycle," Energy, Elsevier, vol. 141(C), pages 1177-1186.
    7. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    8. Świerzewski, Mateusz & Kalina, Jacek, 2020. "Optimisation of biomass-fired cogeneration plants using ORC technology," Renewable Energy, Elsevier, vol. 159(C), pages 195-214.
    9. Grauberger, Alex & Young, Derek & Bandhauer, Todd, 2022. "Experimental validation of an organic rankine-vapor compression cooling cycle using low GWP refrigerant R1234ze(E)," Applied Energy, Elsevier, vol. 307(C).
    10. Milad Ashouri & Fatemeh Razi Astaraei & Roghaye Ghasempour & M.H. Ahmadi & Michel Feidt, 2017. "Thermodynamic and economic evaluation of a small-scale organic Rankine cycle integrated with a concentrating solar collector," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(1), pages 54-65.
    11. Sauret, Emilie & Gu, Yuantong, 2014. "Three-dimensional off-design numerical analysis of an organic Rankine cycle radial-inflow turbine," Applied Energy, Elsevier, vol. 135(C), pages 202-211.
    12. Wang, Hailei & Peterson, Richard & Harada, Kevin & Miller, Erik & Ingram-Goble, Robbie & Fisher, Luke & Yih, James & Ward, Chris, 2011. "Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling," Energy, Elsevier, vol. 36(1), pages 447-458.
    13. Saboora Khatoon & Nasser Mohammed A. Almefreji & Man-Hoe Kim, 2021. "Thermodynamic Study of a Combined Power and Refrigeration System for Low-Grade Heat Energy Source," Energies, MDPI, vol. 14(2), pages 1-13, January.
    14. Semmari, Hamza & Bouaicha, Foued & Aberkane, Sofiane & Filali, Abdelkader & Blessent, Daniela & Badache, Messaoud, 2024. "Geological context and thermo-economic study of an indirect heat ORC geothermal power plant for the northeast region of Algeria," Energy, Elsevier, vol. 290(C).
    15. Schuster, A. & Karellas, S. & Aumann, R., 2010. "Efficiency optimization potential in supercritical Organic Rankine Cycles," Energy, Elsevier, vol. 35(2), pages 1033-1039.
    16. Guzović, Zvonimir & Kastrapeli, Simun & Budanko, Marina & Klun, Mario & Rašković, Predrag, 2024. "Improving the thermodynamic efficiency and turboexpander design in bottoming organic Rankine cycles: The impact of working fluid selection," Energy, Elsevier, vol. 307(C).
    17. Mana, A.A. & Kaitouni, S.I. & Kousksou, T. & Jamil, A., 2023. "Enhancing sustainable energy conversion: Comparative study of superheated and recuperative ORC systems for waste heat recovery and geothermal applications, with focus on 4E performance," Energy, Elsevier, vol. 284(C).
    18. Garland, Shane D. & Noall, Jeff & Bandhauer, Todd M., 2018. "Experimentally validated modeling of a turbo-compression cooling system for power plant waste heat recovery," Energy, Elsevier, vol. 156(C), pages 32-44.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xia & Fang, Song & Zhang, Hanwei & Xu, Zhuoren & Jiang, Hanying & Rong, Yangyiming & Wang, Kai & Zhi, Xiaoqin & Qiu, Limin, 2023. "Dynamic characteristics of a mechanically coupled organic Rankine-vapor compression system for heat-driven cooling," Energy, Elsevier, vol. 280(C).
    2. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    3. Alshammari, Saif & Kadam, Sambhaji T. & Yu, Zhibin, 2023. "Assessment of single rotor expander-compressor device in combined organic Rankine cycle (ORC) and vapor compression refrigeration cycle (VCR)," Energy, Elsevier, vol. 282(C).
    4. Landelle, Arnaud & Tauveron, Nicolas & Haberschill, Philippe & Revellin, Rémi & Colasson, Stéphane, 2017. "Organic Rankine cycle design and performance comparison based on experimental database," Applied Energy, Elsevier, vol. 204(C), pages 1172-1187.
    5. Miao, Zheng & Wang, Zhanbo & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Xu, Jinliang, 2023. "Development of selection criteria of zeotropic mixtures as working fluids for the trans-critical organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    6. Grauberger, Alex & Young, Derek & Bandhauer, Todd, 2022. "Off-design performance of an organic Rankine-vapor compression cooling cycle using R1234ze(E)," Applied Energy, Elsevier, vol. 321(C).
    7. Roberto Pili & Hartmut Spliethoff & Christoph Wieland, 2017. "Dynamic Simulation of an Organic Rankine Cycle—Detailed Model of a Kettle Boiler," Energies, MDPI, vol. 10(4), pages 1-28, April.
    8. Yamada, Noboru & Tominaga, Yoshihito & Yoshida, Takanori, 2014. "Demonstration of 10-Wp micro organic Rankine cycle generator for low-grade heat recovery," Energy, Elsevier, vol. 78(C), pages 806-813.
    9. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    10. Li, Chengyu & Wang, Huaixin, 2016. "Power cycles for waste heat recovery from medium to high temperature flue gas sources – from a view of thermodynamic optimization," Applied Energy, Elsevier, vol. 180(C), pages 707-721.
    11. Nie, Xianhua & Du, Zhenyu & Zhao, Li & Deng, Shuai & Zhang, Yue, 2019. "Molecular dynamics study on transport properties of supercritical working fluids: Literature review and case study," Applied Energy, Elsevier, vol. 250(C), pages 63-80.
    12. Alshammari, Fuhaid & Pesyridis, Apostolos & Karvountzis-Kontakiotis, Apostolos & Franchetti, Ben & Pesmazoglou, Yagos, 2018. "Experimental study of a small scale organic Rankine cycle waste heat recovery system for a heavy duty diesel engine with focus on the radial inflow turbine expander performance," Applied Energy, Elsevier, vol. 215(C), pages 543-555.
    13. Ni, Jiaxin & Zhao, Li & Zhang, Zhengtao & Zhang, Ying & Zhang, Jianyuan & Deng, Shuai & Ma, Minglu, 2018. "Dynamic performance investigation of organic Rankine cycle driven by solar energy under cloudy condition," Energy, Elsevier, vol. 147(C), pages 122-141.
    14. Yu, Wei & Liu, Chao & Ban, Xijie & Xin, Liyong & Wang, Shukun, 2024. "Thermal stability of MDM and oxidative decomposition mechanism under the condition of air infiltration: A combined experimental, ReaxFF-MD and DFT study," Energy, Elsevier, vol. 310(C).
    15. Niu, Jintao & Wang, Jiansheng & Liu, Xueling, 2023. "Thermodynamic and economic analysis of organic Rankine cycle combined with flash cycle and ejector," Energy, Elsevier, vol. 282(C).
    16. Pezzuolo, Alex & Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2016. "The ORC-PD: A versatile tool for fluid selection and Organic Rankine Cycle unit design," Energy, Elsevier, vol. 102(C), pages 605-620.
    17. Guo, T. & Wang, H.X. & Zhang, S.J., 2011. "Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geothermal sources," Energy, Elsevier, vol. 36(5), pages 2639-2649.
    18. Parisa Heidarnejad & Hadi Genceli & Nasim Hashemian & Mustafa Asker & Mohammad Al-Rawi, 2024. "Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends," Energies, MDPI, vol. 17(15), pages 1-30, August.
    19. Wang, E.H. & Zhang, H.G. & Zhao, Y. & Fan, B.Y. & Wu, Y.T. & Mu, Q.H., 2012. "Performance analysis of a novel system combining a dual loop organic Rankine cycle (ORC) with a gasoline engine," Energy, Elsevier, vol. 43(1), pages 385-395.
    20. Braimakis, Konstantinos & Mikelis, Angelos & Charalampidis, Antonios & Karellas, Sotirios, 2020. "Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery," Energy, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:1:p:171-:d:1559781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.