IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v156y2018icp32-44.html
   My bibliography  Save this article

Experimentally validated modeling of a turbo-compression cooling system for power plant waste heat recovery

Author

Listed:
  • Garland, Shane D.
  • Noall, Jeff
  • Bandhauer, Todd M.

Abstract

Waste heat recovery systems utilize exhaust heat from power generation systems to produce mechanical work, provide cooling, or create high temperature thermal energy. One system that provides a cooling effect is the turbo-compression cooling system, which operates by using low-grade waste heat to vaporize a fluid and spin a turbine in a recuperative Rankine cycle. The turbine power is used to directly drive a compressor in a traditional vapor-compression cycle. This study presents a theoretical modeling approach that uses compressor and turbine efficiency maps and a heat exchanger UA scaling methodology to make performance predictions over a range of ambient temperatures and cooling loads. The results of experimental testing for a 250 kWth TCCS showed good correlation (maximum error of 2.0%) for power and cooling cycle mass flow ranges of 0.35 kg s−1–0.5 kg s−1 and 0.65–0.85 kg s−1, respectively. The validated modeling approach was used to predict system performance for a Natural Gas Combined Cycle power plant application.

Suggested Citation

  • Garland, Shane D. & Noall, Jeff & Bandhauer, Todd M., 2018. "Experimentally validated modeling of a turbo-compression cooling system for power plant waste heat recovery," Energy, Elsevier, vol. 156(C), pages 32-44.
  • Handle: RePEc:eee:energy:v:156:y:2018:i:c:p:32-44
    DOI: 10.1016/j.energy.2018.05.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218308685
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xia & Fang, Song & Zhang, Hanwei & Xu, Zhuoren & Jiang, Hanying & Rong, Yangyiming & Wang, Kai & Zhi, Xiaoqin & Qiu, Limin, 2023. "Dynamic characteristics of a mechanically coupled organic Rankine-vapor compression system for heat-driven cooling," Energy, Elsevier, vol. 280(C).
    2. Alshammari, Saif & Kadam, Sambhaji T. & Yu, Zhibin, 2023. "Assessment of single rotor expander-compressor device in combined organic Rankine cycle (ORC) and vapor compression refrigeration cycle (VCR)," Energy, Elsevier, vol. 282(C).
    3. Grauberger, Alex & Young, Derek & Bandhauer, Todd, 2022. "Experimental validation of an organic rankine-vapor compression cooling cycle using low GWP refrigerant R1234ze(E)," Applied Energy, Elsevier, vol. 307(C).
    4. Grauberger, Alex & Young, Derek & Bandhauer, Todd, 2022. "Off-design performance of an organic Rankine-vapor compression cooling cycle using R1234ze(E)," Applied Energy, Elsevier, vol. 321(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:156:y:2018:i:c:p:32-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.