IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i1p138-d1558356.html
   My bibliography  Save this article

Assessment and Analysis of Waste Treatment and Environmental Management

Author

Listed:
  • Robert Oleniacz

    (Department of Environmental Management and Protection, Faculty of Geo-Data Science, Geodesy and Environmental Engineering, AGH University of Krakow, Mickiewicza 30 Av., 30-059 Krakow, Poland)

  • Katarzyna Grzesik

    (Department of Environmental Management and Protection, Faculty of Geo-Data Science, Geodesy and Environmental Engineering, AGH University of Krakow, Mickiewicza 30 Av., 30-059 Krakow, Poland)

Abstract

The waste management sector plays a crucial role within the broader environmental management system [...]

Suggested Citation

  • Robert Oleniacz & Katarzyna Grzesik, 2025. "Assessment and Analysis of Waste Treatment and Environmental Management," Energies, MDPI, vol. 18(1), pages 1-10, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:1:p:138-:d:1558356
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/138/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/138/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wissem Mnif & Faouzi Ben Rebah, 2023. "Bioflocculants as Alternative to Synthetic Polymers to Enhance Wastewater Sludge Dewaterability: A Review," Energies, MDPI, vol. 16(8), pages 1-19, April.
    2. Dominika Dabrowska & Wojciech Rykala & Vahid Nourani, 2023. "Causes, Types and Consequences of Municipal Waste Landfill Fires—Literature Review," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    3. Sciubba, Enrico & Ulgiati, Sergio, 2005. "Emergy and exergy analyses: Complementary methods or irreducible ideological options?," Energy, Elsevier, vol. 30(10), pages 1953-1988.
    4. Sonja Cerar & Luka Serianz & Katja Koren & Joerg Prestor & Nina Mali, 2022. "Synoptic Risk Assessment of Groundwater Contamination from Landfills," Energies, MDPI, vol. 15(14), pages 1-17, July.
    5. Piotr Jakubowicz & Teresa Steliga & Katarzyna Wojtowicz, 2022. "Analysis of Temperature Influence on Precipitation of Secondary Sediments during Water Injection into an Absorptive Well," Energies, MDPI, vol. 15(23), pages 1-17, December.
    6. Monika Czop & Beata Łaźniewska-Piekarczyk & Małgorzata Kajda-Szcześniak, 2022. "Evaluation of the Immobilization of Fly Ash from the Incineration of Municipal Waste in Cement Mortar Incorporating Nanomaterials—A Case Study," Energies, MDPI, vol. 15(23), pages 1-16, November.
    7. Atilgan Atilgan & Anna Krakowiak-Bal & Hasan Ertop & Burak Saltuk & Mateusz Malinowski, 2023. "The Energy Potential of Waste from Banana Production: A Case Study of the Mediterranean Region," Energies, MDPI, vol. 16(14), pages 1-13, July.
    8. Boško Josimović & Božidar Manić & Nikola Krunić, 2022. "Strategic Environmental Assessment as a Support in a Sustainable National Waste Management Program—European Experience in Serbia," Energies, MDPI, vol. 15(13), pages 1-13, June.
    9. Arkadiusz Nędzarek & Małgorzata Bonisławska & Agnieszka Tórz & Adam Tański & Krzysztof Formicki, 2022. "Effect of Filter Medium on Water Quality during Passive Biofilter Activation in a Recirculating Aquaculture System for Oncorhynchus mykiss," Energies, MDPI, vol. 15(19), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nielsen, S.N. & Müller, F., 2009. "Understanding the functional principles of nature—Proposing another type of ecosystem services," Ecological Modelling, Elsevier, vol. 220(16), pages 1913-1925.
    2. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.
    4. Bastianoni, S. & Facchini, A. & Susani, L. & Tiezzi, E., 2007. "Emergy as a function of exergy," Energy, Elsevier, vol. 32(7), pages 1158-1162.
    5. Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
    6. Ting Chang & Degang Yang & Jinwei Huo & Fuqiang Xia & Zhiping Zhang, 2018. "Evaluation of Oasis Sustainability Based on Emergy and Decomposition Analysis," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
    7. Giannetti, B.F. & Almeida, C.M.V.B. & Bonilla, S.H., 2010. "Comparing emergy accounting with well-known sustainability metrics: The case of Southern Cone Common Market, Mercosur," Energy Policy, Elsevier, vol. 38(7), pages 3518-3526, July.
    8. Deymi-Dashtebayaz, Mahdi & Norani, Marziye, 2021. "Sustainability assessment and emergy analysis of employing the CCHP system under two different scenarios in a data center," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Simpson, Adam P. & Edwards, Chris F., 2013. "The utility of environmental exergy analysis for decision making in energy," Energy, Elsevier, vol. 55(C), pages 742-751.
    10. Bastianoni, Simone & Morandi, Fabiana & Flaminio, Tommaso & Pulselli, Riccardo M. & Tiezzi, Elisa B.P., 2011. "Emergy and emergy algebra explained by means of ingenuous set theory," Ecological Modelling, Elsevier, vol. 222(16), pages 2903-2907.
    11. Tzanakakis, V.A. & Angelakis, A.N., 2011. "Chemical exergy as a unified and objective indicator in the assessment and optimization of land treatment systems," Ecological Modelling, Elsevier, vol. 222(17), pages 3082-3091.
    12. Bastianoni, S. & Campbell, D.E. & Ridolfi, R. & Pulselli, F.M., 2009. "The solar transformity of petroleum fuels," Ecological Modelling, Elsevier, vol. 220(1), pages 40-50.
    13. Peng, T. & Lu, H.F. & Wu, W.L. & Campbell, D.E. & Zhao, G.S. & Zou, J.H. & Chen, J., 2008. "Should a small combined heat and power plant (CHP) open to its regional power and heat networks? Integrated economic, energy, and emergy evaluation of optimization plans for Jiufa CHP," Energy, Elsevier, vol. 33(3), pages 437-445.
    14. Ukidwe, Nandan U. & Bakshi, Bhavik R., 2007. "Industrial and ecological cumulative exergy consumption of the United States via the 1997 input–output benchmark model," Energy, Elsevier, vol. 32(9), pages 1560-1592.
    15. Fengjiao Ma & A. Egrinya Eneji & Jintong Liu, 2014. "Understanding Relationships among Agro-Ecosystem Services Based on Emergy Analysis in Luancheng County, North China," Sustainability, MDPI, vol. 6(12), pages 1-20, November.
    16. Arslan, Fırat, 2024. "Production-water user association performance nexus in mediterranean irrigated agriculture: The case of banana in Türkiye," Agricultural Water Management, Elsevier, vol. 292(C).
    17. Ricardo Enrique Vega-Azamar & Rabindranarth Romero-López & Mathias Glaus & Norma Angélica Oropeza-García & Robert Hausler, 2015. "Sustainability Assessment of the Residential Land Use in Seven Boroughs of the Island of Montreal, Canada," Sustainability, MDPI, vol. 7(3), pages 1-19, February.
    18. Chen, G.Q. & Ji, Xi, 2007. "Chemical exergy based evaluation of water quality," Ecological Modelling, Elsevier, vol. 200(1), pages 259-268.
    19. Casisi, Melchiorre & Khedr, Sobhy & Reini, Mauro, 2023. "The Thermoeconomic Environment and the exergy-based cost accounting of technological and biological systems," Energy, Elsevier, vol. 262(PA).
    20. Jiang, M.M. & Chen, B., 2011. "Integrated urban ecosystem evaluation and modeling based on embodied cosmic exergy," Ecological Modelling, Elsevier, vol. 222(13), pages 2149-2165.

    More about this item

    Keywords

    n/a;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:1:p:138-:d:1558356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.