IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i13p2149-2165.html
   My bibliography  Save this article

Integrated urban ecosystem evaluation and modeling based on embodied cosmic exergy

Author

Listed:
  • Jiang, M.M.
  • Chen, B.

Abstract

This paper presented a thermodynamic synthesis that involved resource accounting, evaluation and modeling of urban ecosystems based on embodied cosmic exergy (EcE), which redefined embodied exergy with the cosmic microwave background radiation (CMBR) as the reference for solar exergy. In a case study of the Beijing urban ecosystem, the major resources supporting the urban ecosystem, both from free natural resources and from the economy, were accounted for, analyzed and evaluated in the same units, Cosmic Joules (Jc). These indicators revealed the current performance of the Beijing urban ecosystem by considering five aspects of the system: EcE sources, EcE intensity, EcE welfare, environmental impacts and economic efficiency. Moreover, through the combination of the EcE synthesis with a systems dynamics, this research constructed an embodied cosmic exergy-based urban system model (EESM) using Beijing as an example of urban development. The results show that the 10 years from 2010 to 2020 will be very critical for the sustainable development of Beijing because many key factors, such as water resources, wastes and urban assets, might be confronted with great changes during this period. These changes will inevitably transform the urban system not only in its external circumstances but also in its inner structure and may lead to serious consequences. Of all the necessary resources, the most sensitive factor is water supply.

Suggested Citation

  • Jiang, M.M. & Chen, B., 2011. "Integrated urban ecosystem evaluation and modeling based on embodied cosmic exergy," Ecological Modelling, Elsevier, vol. 222(13), pages 2149-2165.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:13:p:2149-2165
    DOI: 10.1016/j.ecolmodel.2011.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011002201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, B. & Chen, G.Q. & Yang, Z.F. & Jiang, M.M., 2007. "Ecological footprint accounting for energy and resource in China," Energy Policy, Elsevier, vol. 35(3), pages 1599-1609, March.
    2. Sciubba, Enrico, 2011. "A revised calculation of the econometric factors α- and β for the Extended Exergy Accounting method," Ecological Modelling, Elsevier, vol. 222(4), pages 1060-1066.
    3. Sciubba, Enrico & Ulgiati, Sergio, 2005. "Emergy and exergy analyses: Complementary methods or irreducible ideological options?," Energy, Elsevier, vol. 30(10), pages 1953-1988.
    4. R White & G Engelen, 1993. "Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns," Environment and Planning A, , vol. 25(8), pages 1175-1199, August.
    5. Yang, Z.F. & Jiang, M.M. & Chen, B. & Zhou, J.B. & Chen, G.Q. & Li, S.C., 2010. "Solar emergy evaluation for Chinese economy," Energy Policy, Elsevier, vol. 38(2), pages 875-886, February.
    6. Brown, M. T. & Herendeen, R. A., 1996. "Embodied energy analysis and EMERGY analysis: a comparative view," Ecological Economics, Elsevier, vol. 19(3), pages 219-235, December.
    7. Brown, Mark T. & Ulgiati, Sergio, 2010. "Updated evaluation of exergy and emergy driving the geobiosphere: A review and refinement of the emergy baseline," Ecological Modelling, Elsevier, vol. 221(20), pages 2501-2508.
    8. Chen, B. & Chen, G.Q., 2006. "Exergy analysis for resource conversion of the Chinese Society 1993 under the material product system," Energy, Elsevier, vol. 31(8), pages 1115-1150.
    9. Cleveland, Cutler J. & Kaufmann, Robert K. & Stern, David I., 2000. "Aggregation and the role of energy in the economy," Ecological Economics, Elsevier, vol. 32(2), pages 301-317, February.
    10. Chen, G.Q. & Chen, B., 2009. "Extended-exergy analysis of the Chinese society," Energy, Elsevier, vol. 34(9), pages 1127-1144.
    11. Huang, Shu-Li & Kao, Wei-Chieh & Lee, Chun-Lin, 2007. "Energetic mechanisms and development of an urban landscape system," Ecological Modelling, Elsevier, vol. 201(3), pages 495-506.
    12. Bastianoni, S. & Facchini, A. & Susani, L. & Tiezzi, E., 2007. "Emergy as a function of exergy," Energy, Elsevier, vol. 32(7), pages 1158-1162.
    13. Mark Deakin & Steve Curwell & Patrizia Lombardi, 2002. "Sustainable Urban Development: The Framework And Directory Of Assessment Methods," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 4(02), pages 171-197.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Feng & Ye, Yaping & Song, Bowen & Wang, Rusong, 2015. "Evaluation of urban suitable ecological land based on the minimum cumulative resistance model: A case study from Changzhou, China," Ecological Modelling, Elsevier, vol. 318(C), pages 194-203.
    2. Han, Baolong & Liu, Hongxiao & Wang, Rusong, 2015. "Urban ecological security assessment for cities in the Beijing–Tianjin–Hebei metropolitan region based on fuzzy and entropy methods," Ecological Modelling, Elsevier, vol. 318(C), pages 217-225.
    3. Ye Liu & Guohe Huang & Yanpeng Cai & Cong Dong, 2011. "An Inexact Mix-Integer Two-Stage Linear Programming Model for Supporting the Management of a Low-Carbon Energy System in China," Energies, MDPI, vol. 4(10), pages 1-30, October.
    4. Patterson, Murray G., 2012. "Are all processes equally efficient from an emergy perspective?," Ecological Modelling, Elsevier, vol. 226(C), pages 77-91.
    5. Ji, Xi, 2015. "Taking the pulse of urban economy: From the perspective of systems ecology," Ecological Modelling, Elsevier, vol. 318(C), pages 36-48.
    6. Shao, Ling & Wu, Zi & Chen, G.Q., 2013. "Exergy based ecological footprint accounting for China," Ecological Modelling, Elsevier, vol. 252(C), pages 83-96.
    7. Zhuang, Mufan & Gao, Ziyan & Geng, Yong & Xiao, Shijiang, 2022. "Spatial distribution pattern of embodied natural resources use in China and its relationship with socioeconomic development: From an exergetic perspective," Resources Policy, Elsevier, vol. 79(C).
    8. Guojiao Chen & Cuiyou Yao & Lurong Fan & Linze Li & Haiqing Cao, 2022. "Sustainability-oriented system dynamics method for coordinated megacity ecosystem development: the case of Beijing, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 11027-11057, September.
    9. Yu, Yadong & Ren, Hongtao & Kharrazi, Ali & Ma, Tieju & Zhu, Bing, 2015. "Exploring socioeconomic drivers of environmental pressure on the city level: The case study of Chongqing in China," Ecological Economics, Elsevier, vol. 118(C), pages 123-131.
    10. Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Ulgiati, Sergio, 2014. "Emergy-based dynamic mechanisms of urban development, resource consumption and environmental impacts," Ecological Modelling, Elsevier, vol. 271(C), pages 90-102.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, G.Q. & Yang, Q. & Zhao, Y.H., 2011. "Renewability of wind power in China: A case study of nonrenewable energy cost and greenhouse gas emission by a plant in Guangxi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2322-2329, June.
    2. Ye Liu & Guohe Huang & Yanpeng Cai & Cong Dong, 2011. "An Inexact Mix-Integer Two-Stage Linear Programming Model for Supporting the Management of a Low-Carbon Energy System in China," Energies, MDPI, vol. 4(10), pages 1-30, October.
    3. Chen, G.Q. & Yang, Q. & Zhao, Y.H. & Wang, Z.F., 2011. "Nonrenewable energy cost and greenhouse gas emissions of a 1.5Â MW solar power tower plant in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1961-1967, May.
    4. Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.
    5. Liu, G.Y. & Yang, Z.F. & Chen, B. & Ulgiati, S., 2009. "Emergy-based urban health evaluation and development pattern analysis," Ecological Modelling, Elsevier, vol. 220(18), pages 2291-2301.
    6. Qi, Hai & Dong, Zhiliang & Dong, Shaohui & Sun, Xiaotian & Zhao, Yiran & Li, Yu, 2021. "Extended exergy accounting for smelting and pressing of metals industry in China," Resources Policy, Elsevier, vol. 74(C).
    7. Baral, Anil & Bakshi, Bhavik R., 2010. "Emergy analysis using US economic input–output models with applications to life cycles of gasoline and corn ethanol," Ecological Modelling, Elsevier, vol. 221(15), pages 1807-1818.
    8. Zhang, Xiao Hong & Deng, ShiHuai & Jiang, WenJu & Zhang, YanZong & Peng, Hong & Li, Li & Yang, Gang & Li, YuanWei, 2010. "Emergy evaluation of the sustainability of two industrial systems based on wastes exchanges," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 182-195.
    9. Gasparatos, Alexandros & El-Haram, Mohamed & Horner, Malcolm, 2009. "The argument against a reductionist approach for measuring sustainable development performance and the need for methodological pluralism," Accounting forum, Elsevier, vol. 33(3), pages 245-256.
    10. Giannetti, B.F. & Almeida, C.M.V.B. & Bonilla, S.H., 2010. "Comparing emergy accounting with well-known sustainability metrics: The case of Southern Cone Common Market, Mercosur," Energy Policy, Elsevier, vol. 38(7), pages 3518-3526, July.
    11. Liu, Xinyu & Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Ulgiati, Sergio, 2016. "Comparing national environmental and economic performances through emergy sustainability indicators: Moving environmental ethics beyond anthropocentrism toward ecocentrism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1532-1542.
    12. Deymi-Dashtebayaz, Mahdi & Norani, Marziye, 2021. "Sustainability assessment and emergy analysis of employing the CCHP system under two different scenarios in a data center," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Ju, L.P. & Chen, B., 2011. "Embodied energy and emergy evaluation of a typical biodiesel production chain in China," Ecological Modelling, Elsevier, vol. 222(14), pages 2385-2392.
    14. Bastianoni, Simone & Morandi, Fabiana & Flaminio, Tommaso & Pulselli, Riccardo M. & Tiezzi, Elisa B.P., 2011. "Emergy and emergy algebra explained by means of ingenuous set theory," Ecological Modelling, Elsevier, vol. 222(16), pages 2903-2907.
    15. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    16. Qingsong Wang & Hongkun Xiao & Qiao Ma & Xueliang Yuan & Jian Zuo & Jian Zhang & Shuguang Wang & Mansen Wang, 2020. "Review of Emergy Analysis and Life Cycle Assessment: Coupling Development Perspective," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
    17. Amaral, Luís P. & Martins, Nélson & Gouveia, Joaquim B., 2016. "A review of emergy theory, its application and latest developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 882-888.
    18. Hoang, Viet-Ngu & Alauddin, Mohammad, 2009. "Analysis of Agricultural Sustainability: A Review of Exergy Methodologies and Their Application in OECD," MPRA Paper 90406, University Library of Munich, Germany, revised 15 Mar 2010.
    19. Grande, U. & Piernik, A. & Nienartowicz, A. & Buonocore, E. & Franzese, P.P., 2023. "Measuring natural capital value and ecological complexity of lake ecosystems," Ecological Modelling, Elsevier, vol. 482(C).
    20. Song, Dan & Lin, Ling & Wu, Ye, 2019. "Extended exergy accounting for a typical cement industry in China," Energy, Elsevier, vol. 174(C), pages 678-686.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:13:p:2149-2165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.