IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5244-d1189644.html
   My bibliography  Save this article

The Energy Potential of Waste from Banana Production: A Case Study of the Mediterranean Region

Author

Listed:
  • Atilgan Atilgan

    (Department of Biosystem Engineering, Faculty of Engineering, Alanya Alaaddin Keykubat University, 07425 Alanya, Turkey)

  • Anna Krakowiak-Bal

    (Department of Bioprocess Engineering, Power Engineering and Automation, Faculty of Production and Power Engineering, University of Agriculture in Krakow, 30-149 Krakow, Poland)

  • Hasan Ertop

    (Faculty of Agriculture, Agricultural Structures and Irrigation, Isparta University of Applied Science, 32260 Isparta, Turkey)

  • Burak Saltuk

    (Department of Biosystem Engineering, Faculty of Engineering, Alanya Alaaddin Keykubat University, 07425 Alanya, Turkey)

  • Mateusz Malinowski

    (Department of Bioprocess Engineering, Power Engineering and Automation, Faculty of Production and Power Engineering, University of Agriculture in Krakow, 30-149 Krakow, Poland)

Abstract

Recently, with the development of technology, the number of studies on the need for energy and the possibilities of covering this need in a sustainable way has been increasing. The management of agricultural biomass and waste is cited as one of the challenges as well as a solution. Mersin and Antalya sites, where banana production is intensively practiced in Turkey, were selected as the study region. The potential amounts of energy values obtained from the waste generated during banana cultivation in the field area of study were calculated. The energy potential was calculated on the basis of the conversion of biogas that can be obtained from the waste. The values obtained were analyzed and compared with the levels of electricity used to determine the economic gains that can be achieved for Mersin and Antalya regions. The data on bananas used in study were obtained from the Turkish Statistical Institute (for the years 2016–2020). It is calculated that 2884.43 MWh of electricity can be generated in Mersin and 2218.26 MWh in Antalya per 5 years from the waste generated during banana production. The values of the number of houses whose needs can be met with the calculated five-year potential electricity amount are 1237 in Mersin and 952 in Antalya. It can be considered that reusing the potential energy that can be obtained from banana waste, examined as material for energy, used in agricultural production will result in a positive impetus to agricultural activities. Energy obtained from banana waste can cover a very small amount of the electrical energy needs of agricultural production, ranging from 0.19% to 0.34%. However, it is concluded that the potential amount of energy to be obtained by recycling not only banana waste but also other agricultural and food waste will be even higher.

Suggested Citation

  • Atilgan Atilgan & Anna Krakowiak-Bal & Hasan Ertop & Burak Saltuk & Mateusz Malinowski, 2023. "The Energy Potential of Waste from Banana Production: A Case Study of the Mediterranean Region," Energies, MDPI, vol. 16(14), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5244-:d:1189644
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5244/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5244/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jakub Sikora & Marcin Niemiec & Anna Szeląg-Sikora & Zofia Gródek-Szostak & Maciej Kuboń & Monika Komorowska, 2020. "The Effect of the Addition of a Fat Emulsifier on the Amount and Quality of the Obtained Biogas," Energies, MDPI, vol. 13(7), pages 1-12, April.
    2. Rincon, Luis & Puri, Manas & Kojakovic, Ana & Maltsoglou, Irini, 2019. "The contribution of sustainable bioenergy to renewable electricity generation in Turkey: Evidence based policy from an integrated energy and agriculture approach," Energy Policy, Elsevier, vol. 130(C), pages 69-88.
    3. Xuejun Qian & Seong Lee & Ana-maria Soto & Guangming Chen, 2018. "Regression Model to Predict the Higher Heating Value of Poultry Waste from Proximate Analysis," Resources, MDPI, vol. 7(3), pages 1-14, June.
    4. Ishtiaq Ahmed & Muhammad Anjum Zia & Huma Afzal & Shaheez Ahmed & Muhammad Ahmad & Zain Akram & Farooq Sher & Hafiz M. N. Iqbal, 2021. "Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy," Sustainability, MDPI, vol. 13(8), pages 1-32, April.
    5. Toklu, E., 2017. "Biomass energy potential and utilization in Turkey," Renewable Energy, Elsevier, vol. 107(C), pages 235-244.
    6. Xuejun Qian & Jingwen Xue & Yulai Yang & Seong W. Lee, 2021. "Thermal Properties and Combustion-Related Problems Prediction of Agricultural Crop Residues," Energies, MDPI, vol. 14(15), pages 1-18, July.
    7. Mahammad Shariful Islam & Susilawati Kasim & Khairul Md. Alam & Adibah Mohd Amin & Tan Geok Hun & Mohammad Amdadul Haque, 2021. "Changes in Chemical Properties of Banana Pseudostem, Mushroom Media Waste, and Chicken Manure through the Co-Composting Process," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    8. Sławomir Kurpaska & Mirosław Janowski & Maciej Gliniak & Anna Krakowiak-Bal & Urszula Ziemiańczyk, 2021. "The Use of Geothermal Energy to Heating Crops under Cover: A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-25, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasan Ertop & Atilgan Atilgan & Joanna Kocięcka & Anna Krakowiak-Bal & Daniel Liberacki & Burak Saltuk & Roman Rolbiecki, 2023. "Calculation of the Potential Biogas and Electricity Values of Animal Wastes: Turkey and Poland Case," Energies, MDPI, vol. 16(22), pages 1-19, November.
    2. Arslan, Fırat, 2024. "Production-water user association performance nexus in mediterranean irrigated agriculture: The case of banana in Türkiye," Agricultural Water Management, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. W. A. M. A. N. Illankoon & Chiara Milanese & Alessandro Girella & Puhulwella G. Rathnasiri & K. H. M. Sudesh & Maria Medina Llamas & Maria Cristina Collivignarelli & Sabrina Sorlini, 2022. "Agricultural Biomass-Based Power Generation Potential in Sri Lanka: A Techno-Economic Analysis," Energies, MDPI, vol. 15(23), pages 1-18, November.
    2. Angel Alcazar-Ruiz & Fernando Dorado & Luz Sanchez-Silva, 2022. "Influence of Temperature and Residence Time on Torrefaction Coupled to Fast Pyrolysis for Valorizing Agricultural Waste," Energies, MDPI, vol. 15(21), pages 1-19, October.
    3. Doppy Roy Nendissa & Atiek Iriany & Jeky Melkianus Sui & Nikmatul Khoiriyah & Onuma Suphattanakul & Worakamol Wisetsri, 2022. "The Role of Renewable and Nonrenewable Energy on Agricultural Economics in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 12(3), pages 352-360, May.
    4. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    5. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    6. Lauri Leppäkoski & Miika P. Marttila & Ville Uusitalo & Jarkko Levänen & Vilma Halonen & Mirja H. Mikkilä, 2021. "Assessing the Carbon Footprint of Biochar from Willow Grown on Marginal Lands in Finland," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    7. Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
    8. Jung, Sungyup & Lee, Jechan & Moon, Deok Hyun & Kim, Ki-Hyun & Kwon, Eilhann E., 2021. "Upgrading biogas into syngas through dry reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Maciej Kuboń & Zbigniew Skibko & Sylwester Tabor & Urszula Malaga-Toboła & Andrzej Borusiewicz & Wacław Romaniuk & Janusz Zarajczyk & Pavel Neuberger, 2023. "Analysis of Voltage Distortions in the Power Grid Arising from Agricultural Biogas Plant Operation," Energies, MDPI, vol. 16(17), pages 1-21, August.
    10. Muhammad Usman & Atif Jahanger & Muhammad Sohail Amjad Makhdum & Magdalena Radulescu & Daniel Balsalobre-Lorente & Elena Jianu, 2022. "An Empirical Investigation of Ecological Footprint Using Nuclear Energy, Industrialization, Fossil Fuels and Foreign Direct Investment," Energies, MDPI, vol. 15(17), pages 1-26, September.
    11. Alba Mondragón-Valero & Borja Velázquez-Martí & Domingo M. Salazar & Isabel López-Cortés, 2018. "Influence of Fertilization and Rootstocks in the Biomass Energy Characterization of Prunus dulcis (Miller)," Energies, MDPI, vol. 11(5), pages 1-12, May.
    12. Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.
    13. Adenike Akinsemolu & Helen Onyeaka & Omololu Fagunwa & Adewale Henry Adenuga, 2023. "Toward a Resilient Future: The Promise of Microbial Bioeconomy," Sustainability, MDPI, vol. 15(9), pages 1-13, April.
    14. Noushabadi, Abolfazl Sajadi & Dashti, Amir & Ahmadijokani, Farhad & Hu, Jinguang & Mohammadi, Amir H., 2021. "Estimation of higher heating values (HHVs) of biomass fuels based on ultimate analysis using machine learning techniques and improved equation," Renewable Energy, Elsevier, vol. 179(C), pages 550-562.
    15. Sharafi laleh, Shayan & Fatemi Alavi, Seyed Hamed & Soltani, Saeed & Mahmoudi, S.M.S. & Rosen, Marc A., 2024. "A novel supercritical carbon dioxide combined cycle fueled by biomass: Thermodynamic assessment," Renewable Energy, Elsevier, vol. 222(C).
    16. Sheng Zhong & Shuwen Niu & Yipeng Wang, 2018. "Research on Potential Evaluation and Sustainable Development of Rural Biomass Energy in Gansu Province of China," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    17. Dennis Krüger & Özge Çepelioğullar Mutlu, 2021. "Demonstration of a Top-Lit Updraft Based Pyrolytic Burner with Low Emission Operation and Automatic Process Control," Energies, MDPI, vol. 14(13), pages 1-16, June.
    18. Esmanur Sirmacekic & Atilgan Atilgan & Roman Rolbiecki & Barbara Jagosz & Stanisław Rolbiecki & Osman Gokdogan & Marcin Niemiec & Joanna Kocięcka, 2022. "Possibilities of Using Whey Wastes in Agriculture: Case of Turkey," Energies, MDPI, vol. 15(24), pages 1-17, December.
    19. Adeleke, Adekunle A. & Ikubanni, Peter P. & Emmanuel, Stephen S. & Fajobi, Moses O. & Nwachukwu, Praise & Adesibikan, Ademidun A. & Odusote, Jamiu K. & Adeyemi, Emmanuel O. & Abioye, Oluwaseyi M. & Ok, 2024. "A comprehensive review on the similarity and disparity of torrefied biomass and coal properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    20. Justyna Kujawska & Monika Kulisz & Piotr Oleszczuk & Wojciech Cel, 2023. "Improved Prediction of the Higher Heating Value of Biomass Using an Artificial Neural Network Model Based on the Selection of Input Parameters," Energies, MDPI, vol. 16(10), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5244-:d:1189644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.