IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9130-d991152.html
   My bibliography  Save this article

Analysis of Temperature Influence on Precipitation of Secondary Sediments during Water Injection into an Absorptive Well

Author

Listed:
  • Piotr Jakubowicz

    (Oil & Gas Institute—National Research Institute, 31-503 Krakow, Poland)

  • Teresa Steliga

    (Oil & Gas Institute—National Research Institute, 31-503 Krakow, Poland)

  • Katarzyna Wojtowicz

    (Oil & Gas Institute—National Research Institute, 31-503 Krakow, Poland)

Abstract

The extraction of hydrocarbons is associated with obtaining certain amounts of water, which is heavily contaminated with a wide range of chemical compounds that negatively affect the environment. At present, practically the only method of managing extracted reservoir waters is their injection into absorbing horizons. Large changes in parameters (pH, Eh, temperature, etc.) occurring during the extraction and storage of water, as well as the contact of the injected water with reservoir water and rock, may result in the precipitation of secondary sediments. The complexity of the injected water/native water/deposit rock system and the wide range of possible interactions do not always allow for correct interpretation of the processes and their impact on near-well zone permeability. One of the factors which has a decisive influence on dissolution/precipitation is temperature change. Applying analytical data of water with low (W-1) and high (W-2) mineralization, calculations were carried out with the use of PRHEEQC software. Changes in solubility index values were determined at ambient temperature (20 °C) and reservoir temperature (94 °C). The obtained results indicate that with increasing temperature, SI changes for a given chemical compound may run in different directions and take different values, depending on the composition of the injected water. The calculations indicate the possibility of a change in the direction of the reaction from dissolution to precipitation, which may lead to clogging of the near-well zone. Simulations of the injected water’s contact with minerals present in the reservoir rock were also carried out. The obtained data indicate that these minerals, in the entire studied temperature range, dissolve in the injected water, but the solubility of anhydrite and dolomite decreases with increasing temperature. If the water is saturated with minerals at low temperature, after heating in the bed, sedimentation and blockage of rock pores may occur, which means there is a reduction in the efficiency of water injection.

Suggested Citation

  • Piotr Jakubowicz & Teresa Steliga & Katarzyna Wojtowicz, 2022. "Analysis of Temperature Influence on Precipitation of Secondary Sediments during Water Injection into an Absorptive Well," Energies, MDPI, vol. 15(23), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9130-:d:991152
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9130/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ebenezer T. Igunnu & George Z. Chen, 2014. "Produced water treatment technologies," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 9(3), pages 157-177.
    2. Saba Daneshgar & Armando Buttafava & Arianna Callegari & Andrea G. Capodaglio, 2018. "Simulations and Laboratory Tests for Assessing Phosphorus Recovery Efficiency from Sewage Sludge," Resources, MDPI, vol. 7(3), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marwa M. Waly & Slobodan B. Mickovski & Craig Thomson, 2023. "Application of Circular Economy in Oil and Gas Produced Water Treatment," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    2. Tiffany Liden & Zacariah L. Hildenbrand & Ramon Sanchez-Rosario & Kevin A. Schug, 2022. "Characterizing Various Produced Waters from Shale Energy Extraction within the Context of Reuse," Energies, MDPI, vol. 15(13), pages 1-15, June.
    3. Roustazadeh Sheikhyousefi, P. & Nasr Esfahany, M. & Colombo, A. & Franzetti, A. & Trasatti, S.P. & Cristiani, P., 2017. "Investigation of different configurations of microbial fuel cells for the treatment of oilfield produced water," Applied Energy, Elsevier, vol. 192(C), pages 457-465.
    4. Aminu, Mohammed D. & Nabavi, Seyed Ali & Rochelle, Christopher A. & Manovic, Vasilije, 2017. "A review of developments in carbon dioxide storage," Applied Energy, Elsevier, vol. 208(C), pages 1389-1419.
    5. Saba Daneshgar & Armando Buttafava & Doretta Capsoni & Arianna Callegari & Andrea G. Capodaglio, 2018. "Impact of pH and Ionic Molar Ratios on Phosphorous Forms Precipitation and Recovery from Different Wastewater Sludges," Resources, MDPI, vol. 7(4), pages 1-22, November.
    6. Dimitrios Koutsonikolas & George Karagiannakis & Konstantinos Plakas & Vasileios Chatzis & George Skevis & Paola Giudicianni & Davide Amato & Pino Sabia & Nikolaos Boukis & Katharina Stoll, 2022. "Membrane and Electrochemical Based Technologies for the Decontamination of Exploitable Streams Produced by Thermochemical Processing of Contaminated Biomass," Energies, MDPI, vol. 15(7), pages 1-35, April.
    7. Echchelh, Alban & Hess, Tim & Sakrabani, Ruben, 2018. "Reusing oil and gas produced water for irrigation of food crops in drylands," Agricultural Water Management, Elsevier, vol. 206(C), pages 124-134.
    8. Yafei Zhao & Ken-ichi Itakura, 2023. "A State-of-the-Art Review on Technology for Carbon Utilization and Storage," Energies, MDPI, vol. 16(10), pages 1-22, May.
    9. Echchelh, Alban & Hess, Tim & Sakrabani, Ruben, 2020. "Agro-environmental sustainability and financial cost of reusing gasfield-produced water for agricultural irrigation," Agricultural Water Management, Elsevier, vol. 227(C).
    10. Ramon Sanchez-Rosario & Zacariah L. Hildenbrand, 2022. "Produced Water Treatment and Valorization: A Techno-Economical Review," Energies, MDPI, vol. 15(13), pages 1-18, June.
    11. Echchelh, Alban & Hess, Tim & Sakrabani, Ruben & de Paz, José Miguel & Visconti, Fernando, 2019. "Assessing the environmental sustainability of irrigation with oil and gas produced water in drylands," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9130-:d:991152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.