IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i16p2903-2907.html
   My bibliography  Save this article

Emergy and emergy algebra explained by means of ingenuous set theory

Author

Listed:
  • Bastianoni, Simone
  • Morandi, Fabiana
  • Flaminio, Tommaso
  • Pulselli, Riccardo M.
  • Tiezzi, Elisa B.P.

Abstract

Emergy is an important concept that has originated several effects in ecology, systems ecology and sustainability science. Its communication, however, has always presented several problems, since it does not follow the same rules of conservation as other energy-based approaches. Attempts have been made to clarify emergy by means of more formal/mathematical approaches, but the problem persists. In this paper, we have introduced a view of emergy and of its algebra based on ingenuous set theory. By means of this simple tool, emergy can be defined as the set of solar exergy that is directly and indirectly necessary to make a product. The operation that correctly sums the emergy “carried” by the inputs to a process is the union. This definition and the operation of union are able to account for all the rules of emergy algebra.

Suggested Citation

  • Bastianoni, Simone & Morandi, Fabiana & Flaminio, Tommaso & Pulselli, Riccardo M. & Tiezzi, Elisa B.P., 2011. "Emergy and emergy algebra explained by means of ingenuous set theory," Ecological Modelling, Elsevier, vol. 222(16), pages 2903-2907.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:16:p:2903-2907
    DOI: 10.1016/j.ecolmodel.2011.05.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011002936
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.05.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sciubba, Enrico & Ulgiati, Sergio, 2005. "Emergy and exergy analyses: Complementary methods or irreducible ideological options?," Energy, Elsevier, vol. 30(10), pages 1953-1988.
    2. Giannantoni, C. & Lazzaretto, A. & Macor, A. & Mirandola, A. & Stoppato, A. & Tonon, S. & Ulgiati, S., 2005. "Multicriteria approach for the improvement of energy systems design," Energy, Elsevier, vol. 30(10), pages 1989-2016.
    3. Brown, M. T. & Herendeen, R. A., 1996. "Embodied energy analysis and EMERGY analysis: a comparative view," Ecological Economics, Elsevier, vol. 19(3), pages 219-235, December.
    4. Li, Linjun & Lu, Hongfang & Campbell, Daniel E. & Ren, Hai, 2010. "Emergy algebra: Improving matrix methods for calculating transformities," Ecological Modelling, Elsevier, vol. 221(3), pages 411-422.
    5. Bastianoni, S. & Facchini, A. & Susani, L. & Tiezzi, E., 2007. "Emergy as a function of exergy," Energy, Elsevier, vol. 32(7), pages 1158-1162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amaral, Luís P. & Martins, Nélson & Gouveia, Joaquim B., 2016. "A review of emergy theory, its application and latest developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 882-888.
    2. Le Corre, O. & Truffet, L., 2015. "Emergy paths computation from interconnected energy system diagram," Ecological Modelling, Elsevier, vol. 313(C), pages 181-200.
    3. Morandi, Fabiana & Campbell, Daniel E. & Bastianoni, Simone, 2014. "Set theory applied to uniquely define the inputs to territorial systems in emergy analyses," Ecological Modelling, Elsevier, vol. 271(C), pages 149-157.
    4. Le Corre, O. & Truffet, L. & Lahlou, C., 2015. "Odum–Tennenbaum–Brown calculus vs emergy and co-emergy analysis," Ecological Modelling, Elsevier, vol. 302(C), pages 9-12.
    5. Zhang, XiaoHong & Hu, He & Zhang, Rong & Deng, ShiHuai, 2014. "Interactions between China׳s economy, energy and the air emissions and their policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 624-638.
    6. Le Corre, O. & Truffet, L., 2012. "Exact computation of emergy based on a mathematical reinterpretation of the rules of emergy algebra," Ecological Modelling, Elsevier, vol. 230(C), pages 101-113.
    7. Morandi, Fabiana & Campbell, Daniel E. & Pulselli, Federico M. & Bastianoni, Simone, 2015. "Emergy evaluation of hierarchically nested systems: application to EU27, Italy and Tuscany and consequences for the meaning of emergy indicators," Ecological Modelling, Elsevier, vol. 315(C), pages 12-27.
    8. Zarbá, Lucía & Brown, Mark T., 2015. "Cycling emergy: computing emergy in trophic networks," Ecological Modelling, Elsevier, vol. 315(C), pages 37-45.
    9. Tennenbaum, Stephen E., 2015. "Emergy and co-emergy," Ecological Modelling, Elsevier, vol. 315(C), pages 116-134.
    10. Coscieme, Luca & Pulselli, Federico M. & Marchettini, Nadia & Sutton, Paul C. & Anderson, Sharolyn & Sweeney, Sharlynn, 2014. "Emergy and ecosystem services: A national biogeographical assessment," Ecosystem Services, Elsevier, vol. 7(C), pages 152-159.
    11. Wang, Xiaolong & Li, Zhejin & Long, Pan & Yan, Lingling & Gao, Wangsheng & Chen, Yuanquan & Sui, Peng, 2017. "Sustainability evaluation of recycling in agricultural systems by emergy accounting," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 114-124.
    12. Patterson, Murray, 2014. "Evaluation of matrix algebra methods for calculating transformities from ecological and economic network data," Ecological Modelling, Elsevier, vol. 271(C), pages 72-82.
    13. Agostinho, Feni & Almeida, Cecília M.V.B. & Bonilla, Silvia H. & Sacomano, José B. & Giannetti, Biagio F., 2013. "Urban solid waste plant treatment in Brazil: Is there a net emergy yield on the recovered materials?," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 143-155.
    14. Morandi, Fabiana & Campbell, Daniel E. & Pulselli, Riccardo M. & Bastianoni, Simone, 2013. "Using the language of sets to describe nested systems in emergy evaluations," Ecological Modelling, Elsevier, vol. 265(C), pages 85-98.
    15. Seghetta, Michele & Østergård, Hanne & Bastianoni, Simone, 2014. "Energy analysis of using macroalgae from eutrophic waters as a bioethanol feedstock," Ecological Modelling, Elsevier, vol. 288(C), pages 25-37.
    16. Saladini, Fabrizio & Patrizi, Nicoletta & Pulselli, Federico M. & Marchettini, Nadia & Bastianoni, Simone, 2016. "Guidelines for emergy evaluation of first, second and third generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 221-227.
    17. Coscieme, Luca & Pulselli, Federico M. & Jørgensen, Sven E. & Bastianoni, Simone & Marchettini, Nadia, 2013. "Thermodynamics-based categorization of ecosystems in a socio-ecological context," Ecological Modelling, Elsevier, vol. 258(C), pages 1-8.
    18. Zhang, Xiaohong & Wu, Liqian & Zhang, Rong & Deng, Shihuai & Zhang, Yanzong & Wu, Jun & Li, Yuanwei & Lin, Lili & Li, Li & Wang, Yinjun & Wang, Lilin, 2013. "Evaluating the relationships among economic growth, energy consumption, air emissions and air environmental protection investment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 259-270.
    19. Kamp, Andreas & Østergård, Hanne, 2013. "How to manage co-product inputs in emergy accounting exemplified by willow production for bioenergy," Ecological Modelling, Elsevier, vol. 253(C), pages 70-78.
    20. Lugaric, Luka & Krajcar, Slavko, 2016. "Transforming cities towards sustainable low-carbon energy systems using emergy synthesis for support in decision making," Energy Policy, Elsevier, vol. 98(C), pages 471-482.
    21. Pulselli, Federico M. & Patrizi, Nicoletta & Focardi, Silvia, 2011. "Calculation of the unit emergy value of water in an Italian watershed," Ecological Modelling, Elsevier, vol. 222(16), pages 2929-2938.
    22. Marvuglia, Antonino & Benetto, Enrico & Rios, Gordon & Rugani, Benedetto, 2013. "SCALE: Software for CALculating Emergy based on life cycle inventories," Ecological Modelling, Elsevier, vol. 248(C), pages 80-91.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marvuglia, Antonino & Benetto, Enrico & Rios, Gordon & Rugani, Benedetto, 2013. "SCALE: Software for CALculating Emergy based on life cycle inventories," Ecological Modelling, Elsevier, vol. 248(C), pages 80-91.
    2. Baral, Anil & Bakshi, Bhavik R., 2010. "Emergy analysis using US economic input–output models with applications to life cycles of gasoline and corn ethanol," Ecological Modelling, Elsevier, vol. 221(15), pages 1807-1818.
    3. Amaral, Luís P. & Martins, Nélson & Gouveia, Joaquim B., 2016. "A review of emergy theory, its application and latest developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 882-888.
    4. Hoang, Viet-Ngu & Alauddin, Mohammad, 2009. "Analysis of Agricultural Sustainability: A Review of Exergy Methodologies and Their Application in OECD," MPRA Paper 90406, University Library of Munich, Germany, revised 15 Mar 2010.
    5. Jiang, M.M. & Chen, B., 2011. "Integrated urban ecosystem evaluation and modeling based on embodied cosmic exergy," Ecological Modelling, Elsevier, vol. 222(13), pages 2149-2165.
    6. Sciubba, Enrico, 2010. "On the Second-Law inconsistency of Emergy Analysis," Energy, Elsevier, vol. 35(9), pages 3696-3706.
    7. Le Corre, O. & Truffet, L., 2012. "Exact computation of emergy based on a mathematical reinterpretation of the rules of emergy algebra," Ecological Modelling, Elsevier, vol. 230(C), pages 101-113.
    8. Patterson, Murray G., 2012. "Are all processes equally efficient from an emergy perspective?," Ecological Modelling, Elsevier, vol. 226(C), pages 77-91.
    9. Giannantoni, Corrado, 2009. "Ordinal benefits vs economic benefits as a reference guide for policy decision making. The case of hydrogen technologies," Energy, Elsevier, vol. 34(12), pages 2230-2239.
    10. Zarbá, Lucía & Brown, Mark T., 2015. "Cycling emergy: computing emergy in trophic networks," Ecological Modelling, Elsevier, vol. 315(C), pages 37-45.
    11. Bastianoni, S. & Facchini, A. & Susani, L. & Tiezzi, E., 2007. "Emergy as a function of exergy," Energy, Elsevier, vol. 32(7), pages 1158-1162.
    12. Almeida, C.M.V.B. & Borges, D. & Bonilla, S.H. & Giannetti, B.F., 2010. "Identifying improvements in water management of bus-washing stations in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 821-831.
    13. Zhang, Xiao Hong & Deng, ShiHuai & Jiang, WenJu & Zhang, YanZong & Peng, Hong & Li, Li & Yang, Gang & Li, YuanWei, 2010. "Emergy evaluation of the sustainability of two industrial systems based on wastes exchanges," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 182-195.
    14. Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
    15. Gasparatos, Alexandros & El-Haram, Mohamed & Horner, Malcolm, 2009. "The argument against a reductionist approach for measuring sustainable development performance and the need for methodological pluralism," Accounting forum, Elsevier, vol. 33(3), pages 245-256.
    16. Giannetti, B.F. & Almeida, C.M.V.B. & Bonilla, S.H., 2010. "Comparing emergy accounting with well-known sustainability metrics: The case of Southern Cone Common Market, Mercosur," Energy Policy, Elsevier, vol. 38(7), pages 3518-3526, July.
    17. Giannantoni, Corrado & Zoli, Mariangela, 2010. "The Four-Sector Diagram of Benefits (FSDOB) as a method for evaluating strategic interactions between humans and the environment: The case study of hydrogen fuel cell buses," Ecological Economics, Elsevier, vol. 69(3), pages 486-494, January.
    18. Deymi-Dashtebayaz, Mahdi & Norani, Marziye, 2021. "Sustainability assessment and emergy analysis of employing the CCHP system under two different scenarios in a data center," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    19. Ju, L.P. & Chen, B., 2011. "Embodied energy and emergy evaluation of a typical biodiesel production chain in China," Ecological Modelling, Elsevier, vol. 222(14), pages 2385-2392.
    20. Patterson, Murray, 2014. "Evaluation of matrix algebra methods for calculating transformities from ecological and economic network data," Ecological Modelling, Elsevier, vol. 271(C), pages 72-82.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:16:p:2903-2907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.