IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i24p6320-d1544188.html
   My bibliography  Save this article

Economic Optimal Dispatch of Distribution Networks Considering the Stochastic Correlation of Wind and Solar Energy

Author

Listed:
  • Haiya Qian

    (School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210098, China
    Jiangsu Collaborative Innovation Center for Smart Distribution Network, Nanjing 211167, China)

  • Shuntao Qi

    (School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210098, China)

  • Min Xu

    (School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210098, China)

  • Feng Li

    (School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210098, China)

Abstract

The traditional optimization scheduling of distribution networks has often only considered the volatility and randomness of wind and solar output. When estimating the prediction errors of wind and solar output, wind turbines and photovoltaics are typically considered separately, overlooking the correlation between them. Accurate modeling of wind and solar output prediction errors is crucial for enhancing the reliability and economy of distribution network scheduling. To address this, this paper proposes a new modeling method. First, based on the volatility and randomness of wind and solar output, it considers the characteristic that wind and solar outputs in the same region at the same time are correlated. A multivariate nonparametric kernel density estimation is introduced to fit the joint prediction error distribution of wind and solar output using historical data. Next, the impact of joint prediction errors on system scheduling costs is considered by introducing a penalty cost in the economic objective function for the errors caused by wind and solar predictions. Additionally, energy storage devices are integrated into the system to smooth power fluctuations, thereby constructing an economically optimized scheduling model for wind–solar–storage distribution networks based on stochastic correlations. Finally, testing is conducted using an improved IEEE-33 node system. The results indicate that the model considering the correlation between wind and solar output significantly improves the fitting accuracy of prediction errors compared to traditional models that only consider randomness. It also enhances the utilization rate of wind and solar energy and improves the economic performance of the distribution network.

Suggested Citation

  • Haiya Qian & Shuntao Qi & Min Xu & Feng Li, 2024. "Economic Optimal Dispatch of Distribution Networks Considering the Stochastic Correlation of Wind and Solar Energy," Energies, MDPI, vol. 17(24), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6320-:d:1544188
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/24/6320/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/24/6320/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhai, Junyi & Wang, Sheng & Guo, Lei & Jiang, Yuning & Kang, Zhongjian & Jones, Colin N., 2022. "Data-driven distributionally robust joint chance-constrained energy management for multi-energy microgrid," Applied Energy, Elsevier, vol. 326(C).
    2. Qin, Zhilong & Li, Wenyuan & Xiong, Xiaofu, 2013. "Incorporating multiple correlations among wind speeds, photovoltaic powers and bus loads in composite system reliability evaluation," Applied Energy, Elsevier, vol. 110(C), pages 285-294.
    3. Li, Ke & Yang, Fan & Wang, Lupan & Yan, Yi & Wang, Haiyang & Zhang, Chenghui, 2022. "A scenario-based two-stage stochastic optimization approach for multi-energy microgrids," Applied Energy, Elsevier, vol. 322(C).
    4. Biswas, Partha P. & Suganthan, P.N. & Qu, B.Y. & Amaratunga, Gehan A.J., 2018. "Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power," Energy, Elsevier, vol. 150(C), pages 1039-1057.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    2. Tan, Bifei & Chen, Simin & Liang, Zipeng & Zheng, Xiaodong & Zhu, Yanjin & Chen, Haoyong, 2024. "An iteration-free hierarchical method for the energy management of multiple-microgrid systems with renewable energy sources and electric vehicles," Applied Energy, Elsevier, vol. 356(C).
    3. Khaled Nusair & Lina Alhmoud, 2020. "Application of Equilibrium Optimizer Algorithm for Optimal Power Flow with High Penetration of Renewable Energy," Energies, MDPI, vol. 13(22), pages 1-35, November.
    4. Liu, Jiejie & Li, Yao & Ma, Yanan & Qin, Ruomu & Meng, Xianyang & Wu, Jiangtao, 2023. "Two-layer multiple scenario optimization framework for integrated energy system based on optimal energy contribution ratio strategy," Energy, Elsevier, vol. 285(C).
    5. Zhang, Zhenwei & Wang, Chengfu & Wu, Qiuwei & Dong, Xiaoming, 2024. "Optimal dispatch for cross-regional integrated energy system with renewable energy uncertainties: A unified spatial-temporal cooperative framework," Energy, Elsevier, vol. 292(C).
    6. Armioun, Majid & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Siano, Pierluigi, 2023. "Optimal scheduling of CCHP-based resilient energy distribution system considering active microgrids' multi-carrier energy transactions," Applied Energy, Elsevier, vol. 350(C).
    7. Cai, Baoping & Liu, Yonghong & Ma, Yunpeng & Huang, Lei & Liu, Zengkai, 2015. "A framework for the reliability evaluation of grid-connected photovoltaic systems in the presence of intermittent faults," Energy, Elsevier, vol. 93(P2), pages 1308-1320.
    8. Ahmed I. Omar & Ziad M. Ali & Mostafa Al-Gabalawy & Shady H. E. Abdel Aleem & Mujahed Al-Dhaifallah, 2020. "Multi-Objective Environmental Economic Dispatch of an Electricity System Considering Integrated Natural Gas Units and Variable Renewable Energy Sources," Mathematics, MDPI, vol. 8(7), pages 1-37, July.
    9. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Liu, Lu & Lian, Jijian, 2021. "Study on short-term optimal operation of cascade hydro-photovoltaic hybrid systems," Applied Energy, Elsevier, vol. 291(C).
    10. O., Yugeswar Reddy & J., Jithendranath & Chakraborty, Ajoy Kumar & Guerrero, Josep M., 2022. "Stochastic optimal power flow in islanded DC microgrids with correlated load and solar PV uncertainties," Applied Energy, Elsevier, vol. 307(C).
    11. Arjmand, Reza & Rahimiyan, Morteza, 2016. "Statistical analysis of a competitive day-ahead market coupled with correlated wind production and electric load," Applied Energy, Elsevier, vol. 161(C), pages 153-167.
    12. Xin-gang, Zhao & Ze-qi, Zhang & Yi-min, Xie & Jin, Meng, 2020. "Economic-environmental dispatch of microgrid based on improved quantum particle swarm optimization," Energy, Elsevier, vol. 195(C).
    13. Zhu, Yansong & Liu, Jizhen & Hu, Yong & Xie, Yan & Zeng, Deliang & Li, Ruilian, 2024. "Distributionally robust optimization model considering deep peak shaving and uncertainty of renewable energy," Energy, Elsevier, vol. 288(C).
    14. Ju, Liwei & Bai, Xiping & Li, Gen & Gan, Wei & Qi, Xin & Ye, Fan, 2024. "Two-stage robust transaction optimization model and benefit allocation strategy for new energy power stations with shared energy storage considering green certificate and virtual energy storage mode," Applied Energy, Elsevier, vol. 362(C).
    15. Al-Bahrani, Loau Tawfak & Horan, Ben & Seyedmahmoudian, Mehdi & Stojcevski, Alex, 2020. "Dynamic economic emission dispatch with load dema nd management for the load demand of electric vehicles during crest shaving and valley filling in smart cities environment," Energy, Elsevier, vol. 195(C).
    16. Gong, Yu & Liu, Pan & Ming, Bo & Li, Dingfang, 2021. "Identifying the effect of forecast uncertainties on hybrid power system operation: A case study of Longyangxia hydro–photovoltaic plant in China," Renewable Energy, Elsevier, vol. 178(C), pages 1303-1321.
    17. Faraz Bhurt & Aamir Ali & Muhammad U. Keerio & Ghulam Abbas & Zahoor Ahmed & Noor H. Mugheri & Yun-Su Kim, 2023. "Stochastic Multi-Objective Optimal Reactive Power Dispatch with the Integration of Wind and Solar Generation," Energies, MDPI, vol. 16(13), pages 1-22, June.
    18. Shao, Shuai & Tan, Zhijia & Liu, Zhiyuan & Shang, Wenlong, 2022. "Balancing the GHG emissions and operational costs for a mixed fleet of electric buses and diesel buses," Applied Energy, Elsevier, vol. 328(C).
    19. Qun Niu & Ming You & Zhile Yang & Yang Zhang, 2021. "Economic Emission Dispatch Considering Renewable Energy Resources—A Multi-Objective Cross Entropy Optimization Approach," Sustainability, MDPI, vol. 13(10), pages 1-33, May.
    20. Zhang, Yusheng & Zhao, Xuehua & Wang, Xin & Li, Aiyun & Wu, Xinhao, 2023. "Multi-objective optimization design of a grid-connected hybrid hydro-photovoltaic system considering power transmission capacity," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6320-:d:1544188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.