IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v93y2015ip2p1308-1320.html
   My bibliography  Save this article

A framework for the reliability evaluation of grid-connected photovoltaic systems in the presence of intermittent faults

Author

Listed:
  • Cai, Baoping
  • Liu, Yonghong
  • Ma, Yunpeng
  • Huang, Lei
  • Liu, Zengkai

Abstract

A framework for the reliability evaluation of grid-connected PV (photovoltaic) systems with intermittent faults is proposed using DBNs (dynamic Bayesian networks). A three-state Markov model is constructed to represent the state transition relationship of no faults, intermittent faults, and permanent faults for PV components. The model is subsequently fused into the DBNs. The reliability and availability of three simple PV systems with centralized, string, and multistring configurations, as well as a complex PV system, are analyzed through the proposed framework. The sequence of the degree of importance of PV components is investigated using mutual information. The effects of intermittent fault parameters, including the coefficients of intermittent fault, permanent fault, and intermittent repair, on the reliability and availability are explored. Results show that the reliability and availability of the PV system with centralized configuration rapidly decrease, compared with those of the PV systems with string and multistring configurations. The sequence of the degree of importance of PV components is DC/AC inverter, DC/DC converter, DC combiner, and PV module arranged from the largest to the smallest. The finding indicates that the DC/AC inverter should be given considerable attention to improve the reliability and availability and to prevent their possible failures.

Suggested Citation

  • Cai, Baoping & Liu, Yonghong & Ma, Yunpeng & Huang, Lei & Liu, Zengkai, 2015. "A framework for the reliability evaluation of grid-connected photovoltaic systems in the presence of intermittent faults," Energy, Elsevier, vol. 93(P2), pages 1308-1320.
  • Handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:1308-1320
    DOI: 10.1016/j.energy.2015.10.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421501436X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.10.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pillai, Gobind G. & Putrus, Ghanim A. & Georgitsioti, Tatiani & Pearsall, Nicola M., 2014. "Near-term economic benefits from grid-connected residential PV (photovoltaic) systems," Energy, Elsevier, vol. 68(C), pages 832-843.
    2. Jones, B. & Jenkinson, I. & Yang, Z. & Wang, J., 2010. "The use of Bayesian network modelling for maintenance planning in a manufacturing industry," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 267-277.
    3. Kohda, Takehisa & Cui, Weimin, 2007. "Risk-based reconfiguration of safety monitoring system using dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1716-1723.
    4. Sharma, Vikrant & Chandel, S.S., 2013. "Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 753-767.
    5. Liu, Zengkai & Liu, Yonghong & Zhang, Dawei & Cai, Baoping & Zheng, Chao, 2015. "Fault diagnosis for a solar assisted heat pump system under incomplete data and expert knowledge," Energy, Elsevier, vol. 87(C), pages 41-48.
    6. Zini, Gabriele & Mangeant, Christophe & Merten, Jens, 2011. "Reliability of large-scale grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 36(9), pages 2334-2340.
    7. Habib, Aziz & Alsieidi, Ragab & Youssef, Ghada, 2009. "Reliability analysis of a consecutive r-out-of-n: F system based on neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 610-624.
    8. Lau, K.Y. & Tan, C.W. & Yatim, A.H.M., 2015. "Photovoltaic systems for Malaysian islands: Effects of interest rates, diesel prices and load sizes," Energy, Elsevier, vol. 83(C), pages 204-216.
    9. Zhang, Peng & Li, Wenyuan & Li, Sherwin & Wang, Yang & Xiao, Weidong, 2013. "Reliability assessment of photovoltaic power systems: Review of current status and future perspectives," Applied Energy, Elsevier, vol. 104(C), pages 822-833.
    10. Morris, Peter & Vine, Desley & Buys, Laurie, 2015. "Application of a Bayesian Network complex system model to a successful community electricity demand reduction program," Energy, Elsevier, vol. 84(C), pages 63-74.
    11. Qin, Zhilong & Li, Wenyuan & Xiong, Xiaofu, 2013. "Incorporating multiple correlations among wind speeds, photovoltaic powers and bus loads in composite system reliability evaluation," Applied Energy, Elsevier, vol. 110(C), pages 285-294.
    12. Massi Pavan, A. & Mellit, A. & De Pieri, D. & Kalogirou, S.A., 2013. "A comparison between BNN and regression polynomial methods for the evaluation of the effect of soiling in large scale photovoltaic plants," Applied Energy, Elsevier, vol. 108(C), pages 392-401.
    13. Arabkoohsar, A. & Machado, L. & Farzaneh-Gord, M. & Koury, R.N.N., 2015. "The first and second law analysis of a grid connected photovoltaic plant equipped with a compressed air energy storage unit," Energy, Elsevier, vol. 87(C), pages 520-539.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Yang & Liu, Qingyou & Jing, Jiajia & Yang, Yan & Zou, Zhengwei, 2017. "A framework for identification of maintenance significant items in reliability centered maintenance," Energy, Elsevier, vol. 118(C), pages 1295-1303.
    2. Peters, Lennart & Madlener, Reinhard, 2017. "Economic evaluation of maintenance strategies for ground-mounted solar photovoltaic plants," Applied Energy, Elsevier, vol. 199(C), pages 264-280.
    3. Belaout, A. & Krim, F. & Mellit, A. & Talbi, B. & Arabi, A., 2018. "Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification," Renewable Energy, Elsevier, vol. 127(C), pages 548-558.
    4. Jose L. López-Prado & Jorge I. Vélez & Guisselle A. Garcia-Llinás, 2020. "Reliability Evaluation in Distribution Networks with Microgrids: Review and Classification of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    5. Joshuva Arockia Dhanraj & Ali Mostafaeipour & Karthikeyan Velmurugan & Kuaanan Techato & Prem Kumar Chaurasiya & Jenoris Muthiya Solomon & Anitha Gopalan & Khamphe Phoungthong, 2021. "An Effective Evaluation on Fault Detection in Solar Panels," Energies, MDPI, vol. 14(22), pages 1-14, November.
    6. Monadi, Mehdi & Zamani, M. Amin & Koch-Ciobotaru, Cosmin & Candela, Jose Ignacio & Rodriguez, Pedro, 2016. "A communication-assisted protection scheme for direct-current distribution networks," Energy, Elsevier, vol. 109(C), pages 578-591.
    7. Sayed, A. & EL-Shimy, M. & El-Metwally, M. & Elshahed, M., 2020. "Impact of subsystems on the overall system availability for the large scale grid-connected photovoltaic systems," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    8. Pramod R. Sonawane & Sheetal Bhandari & Rajkumar Bhimgonda Patil & Sameer Al-Dahidi, 2023. "Reliability and Criticality Analysis of a Large-Scale Solar Photovoltaic System Using Fault Tree Analysis Approach," Sustainability, MDPI, vol. 15(5), pages 1-24, March.
    9. Eltton Araujo & Paulo Pereira & Jamilson Dantas & Paulo Maciel, 2020. "Dependability Impact in the Smart Solar Power Systems: An Analysis of Smart Buildings," Energies, MDPI, vol. 14(1), pages 1-24, December.
    10. A. Sayed & M. El-Shimy & M. El-Metwally & M. Elshahed, 2019. "Reliability, Availability and Maintainability Analysis for Grid-Connected Solar Photovoltaic Systems," Energies, MDPI, vol. 12(7), pages 1-18, March.
    11. Cai, Baoping & Liu, Yu & Fan, Qian, 2016. "A multiphase dynamic Bayesian networks methodology for the determination of safety integrity levels," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 105-115.
    12. Karngala, Arun Kumar & Singh, Chanan, 2023. "Impact of system parameters and geospatial variables on the reliability of residential systems with PV and energy storage," Applied Energy, Elsevier, vol. 344(C).
    13. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mosadeghy, Mehdi & Yan, Ruifeng & Saha, Tapan Kumar, 2016. "Impact of PV penetration level on the capacity value of South Australian wind farms," Renewable Energy, Elsevier, vol. 85(C), pages 1135-1142.
    2. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    3. Sueyoshi, Toshiyuki & Goto, Mika, 2017. "Measurement of returns to scale on large photovoltaic power stations in the United States and Germany," Energy Economics, Elsevier, vol. 64(C), pages 306-320.
    4. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Photovoltaic power stations in Germany and the United States: A comparative study by data envelopment analysis," Energy Economics, Elsevier, vol. 42(C), pages 271-288.
    5. Gupta, Nikita & Garg, Rachana & Kumar, Parmod, 2017. "Sensitivity and reliability models of a PV system connected to grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 188-196.
    6. Stefan Baschel & Elena Koubli & Jyotirmoy Roy & Ralph Gottschalg, 2018. "Impact of Component Reliability on Large Scale Photovoltaic Systems’ Performance," Energies, MDPI, vol. 11(6), pages 1-16, June.
    7. Gallardo-Saavedra, Sara & Hernández-Callejo, Luis & Duque-Pérez, Oscar, 2019. "Quantitative failure rates and modes analysis in photovoltaic plants," Energy, Elsevier, vol. 183(C), pages 825-836.
    8. Lu, Hao & Zhao, Wenjun, 2018. "Effects of particle sizes and tilt angles on dust deposition characteristics of a ground-mounted solar photovoltaic system," Applied Energy, Elsevier, vol. 220(C), pages 514-526.
    9. Sayed, A. & EL-Shimy, M. & El-Metwally, M. & Elshahed, M., 2020. "Impact of subsystems on the overall system availability for the large scale grid-connected photovoltaic systems," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    10. Li, Mei & Liu, Zixian & Li, Xiaopeng & Liu, Yiliu, 2019. "Dynamic risk assessment in healthcare based on Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 327-334.
    11. Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
    12. A. Sayed & M. El-Shimy & M. El-Metwally & M. Elshahed, 2019. "Reliability, Availability and Maintainability Analysis for Grid-Connected Solar Photovoltaic Systems," Energies, MDPI, vol. 12(7), pages 1-18, March.
    13. Obara, Shin’ya & Konno, Daisuke & Utsugi, Yuta & Morel, Jorge, 2014. "Analysis of output power and capacity reduction in electrical storage facilities by peak shift control of PV system with bifacial modules," Applied Energy, Elsevier, vol. 128(C), pages 35-48.
    14. Rawat, Rahul & Singh, Ramayan & Sastry, O.S. & Kaushik, S.C., 2017. "Performance evaluation of micromorph based thin film photovoltaic modules in real operating conditions of composite climate," Energy, Elsevier, vol. 120(C), pages 537-548.
    15. Ferdinando Chiacchio & Fabio Famoso & Diego D’Urso & Sebastian Brusca & Jose Ignacio Aizpurua & Luca Cedola, 2018. "Dynamic Performance Evaluation of Photovoltaic Power Plant by Stochastic Hybrid Fault Tree Automaton Model," Energies, MDPI, vol. 11(2), pages 1-22, January.
    16. Lu, Hao & Zhao, Wenjun, 2019. "CFD prediction of dust pollution and impact on an isolated ground-mounted solar photovoltaic system," Renewable Energy, Elsevier, vol. 131(C), pages 829-840.
    17. Wang, Chuan & Liu, Yupeng & Wang, Dongbo & Wang, Guorong & Wang, Dingya & Yu, Chao, 2021. "Reliability evaluation method based on dynamic fault diagnosis results: A case study of a seabed mud lifting system," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    18. Borunda, Mónica & Jaramillo, O.A. & Reyes, Alberto & Ibargüengoytia, Pablo H., 2016. "Bayesian networks in renewable energy systems: A bibliographical survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 32-45.
    19. Hamza Abunima & Jiashen Teh & Ching-Ming Lai & Hussein Jumma Jabir, 2018. "A Systematic Review of Reliability Studies on Composite Power Systems: A Coherent Taxonomy Motivations, Open Challenges, Recommendations, and New Research Directions," Energies, MDPI, vol. 11(9), pages 1-37, September.
    20. Jose L. López-Prado & Jorge I. Vélez & Guisselle A. Garcia-Llinás, 2020. "Reliability Evaluation in Distribution Networks with Microgrids: Review and Classification of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:1308-1320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.