IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v110y2013icp285-294.html
   My bibliography  Save this article

Incorporating multiple correlations among wind speeds, photovoltaic powers and bus loads in composite system reliability evaluation

Author

Listed:
  • Qin, Zhilong
  • Li, Wenyuan
  • Xiong, Xiaofu

Abstract

This paper presents a composite generation and transmission system reliability evaluation method incorporating multiple correlations among wind speeds, insolations and bus/regional load curves. The proposed method can accurately model any probability distribution and all the correlations between wind speeds, between solar insolations, between load curves, between wind speeds and solar insolations, between wind speeds and load curves, and between solar insolations and load curves. The IEEE-Reliability Test System (RTS) with additional two wind farms and two PV power stations is used to demonstrate the application of the presented method in composite system reliability evaluation.

Suggested Citation

  • Qin, Zhilong & Li, Wenyuan & Xiong, Xiaofu, 2013. "Incorporating multiple correlations among wind speeds, photovoltaic powers and bus loads in composite system reliability evaluation," Applied Energy, Elsevier, vol. 110(C), pages 285-294.
  • Handle: RePEc:eee:appene:v:110:y:2013:i:c:p:285-294
    DOI: 10.1016/j.apenergy.2013.04.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913003401
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.04.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lo Brano, Valerio & Orioli, Aldo & Ciulla, Giuseppina & Culotta, Simona, 2011. "Quality of wind speed fitting distributions for the urban area of Palermo, Italy," Renewable Energy, Elsevier, vol. 36(3), pages 1026-1039.
    2. Altunkaynak, Abdüsselam & Erdik, Tarkan & Dabanlı, İsmail & Şen, Zekai, 2012. "Theoretical derivation of wind power probability distribution function and applications," Applied Energy, Elsevier, vol. 92(C), pages 809-814.
    3. Chang, Tian Pau, 2011. "Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application," Applied Energy, Elsevier, vol. 88(1), pages 272-282, January.
    4. Feijóo, Andrés & Villanueva, Daniel & Pazos, José Luis & Sobolewski, Robert, 2011. "Simulation of correlated wind speeds: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2826-2832, August.
    5. Chang, Tian Pau, 2011. "Estimation of wind energy potential using different probability density functions," Applied Energy, Elsevier, vol. 88(5), pages 1848-1856, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anderson Mitterhofer Iung & Fernando Luiz Cyrino Oliveira & André Luís Marques Marcato, 2023. "A Review on Modeling Variable Renewable Energy: Complementarity and Spatial–Temporal Dependence," Energies, MDPI, vol. 16(3), pages 1-24, January.
    2. Arjmand, Reza & Rahimiyan, Morteza, 2016. "Statistical analysis of a competitive day-ahead market coupled with correlated wind production and electric load," Applied Energy, Elsevier, vol. 161(C), pages 153-167.
    3. Wang, Zhongliang & Zhu, Hongyu & Zhang, Dongdong & Goh, Hui Hwang & Dong, Yunxuan & Wu, Thomas, 2023. "Modelling of wind and photovoltaic power output considering dynamic spatio-temporal correlation," Applied Energy, Elsevier, vol. 352(C).
    4. Jose L. López-Prado & Jorge I. Vélez & Guisselle A. Garcia-Llinás, 2020. "Reliability Evaluation in Distribution Networks with Microgrids: Review and Classification of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    5. Nuño Martinez, Edgar & Cutululis, Nicolaos & Sørensen, Poul, 2018. "High dimensional dependence in power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 197-213.
    6. Díaz, Guzmán & Gómez-Aleixandre, Javier & Coto, José, 2016. "Wind power scenario generation through state-space specifications for uncertainty analysis of wind power plants," Applied Energy, Elsevier, vol. 162(C), pages 21-30.
    7. Cai, Baoping & Liu, Yonghong & Ma, Yunpeng & Huang, Lei & Liu, Zengkai, 2015. "A framework for the reliability evaluation of grid-connected photovoltaic systems in the presence of intermittent faults," Energy, Elsevier, vol. 93(P2), pages 1308-1320.
    8. Mosadeghy, Mehdi & Yan, Ruifeng & Saha, Tapan Kumar, 2016. "Impact of PV penetration level on the capacity value of South Australian wind farms," Renewable Energy, Elsevier, vol. 85(C), pages 1135-1142.
    9. Hamza Abunima & Jiashen Teh & Ching-Ming Lai & Hussein Jumma Jabir, 2018. "A Systematic Review of Reliability Studies on Composite Power Systems: A Coherent Taxonomy Motivations, Open Challenges, Recommendations, and New Research Directions," Energies, MDPI, vol. 11(9), pages 1-37, September.
    10. Wang, Can & Xie, Haipeng & Bie, Zhaohong & Li, Gengfeng & Yan, Chao, 2021. "Fast supply reliability evaluation of integrated power-gas system based on stochastic capacity network model and importance sampling," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    11. Aslani, Mehrdad & Faraji, Jamal & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2022. "A novel clustering-based method for reliability assessment of cyber-physical microgrids considering cyber interdependencies and information transmission errors," Applied Energy, Elsevier, vol. 315(C).
    12. Golestaneh, Faranak & Gooi, Hoay Beng & Pinson, Pierre, 2016. "Generation and evaluation of space–time trajectories of photovoltaic power," Applied Energy, Elsevier, vol. 176(C), pages 80-91.
    13. Zeng, Bo & Wen, Junqiang & Shi, Jinyue & Zhang, Jianhua & Zhang, Yuying, 2016. "A multi-level approach to active distribution system planning for efficient renewable energy harvesting in a deregulated environment," Energy, Elsevier, vol. 96(C), pages 614-624.
    14. Mohseni, Soheil & Khalid, Roomana & Brent, Alan C., 2023. "Stochastic, resilience-oriented optimal sizing of off-grid microgrids considering EV-charging demand response: An efficiency comparison of state-of-the-art metaheuristics," Applied Energy, Elsevier, vol. 341(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jain, Tanmay & Verma, Kusum, 2024. "Reliability based computational model for stochastic unit commitment of a bulk power system integrated with volatile wind power," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Deep, Sneh & Sarkar, Arnab & Ghawat, Mayur & Rajak, Manoj Kumar, 2020. "Estimation of the wind energy potential for coastal locations in India using the Weibull model," Renewable Energy, Elsevier, vol. 161(C), pages 319-339.
    3. Allouhi, A. & Zamzoum, O. & Islam, M.R. & Saidur, R. & Kousksou, T. & Jamil, A. & Derouich, A., 2017. "Evaluation of wind energy potential in Morocco's coastal regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 311-324.
    4. Jia, Junmei & Yan, Zaizai & Peng, Xiuyun & An, Xiaoyan, 2020. "A new distribution for modeling the wind speed data in Inner Mongolia of China," Renewable Energy, Elsevier, vol. 162(C), pages 1979-1991.
    5. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    6. Chang, Tian-Pau & Ko, Hong-Hsi & Liu, Feng-Jiao & Chen, Pai-Hsun & Chang, Ying-Pin & Liang, Ying-Hsin & Jang, Horng-Yuan & Lin, Tsung-Chi & Chen, Yi-Hwa, 2012. "Fractal dimension of wind speed time series," Applied Energy, Elsevier, vol. 93(C), pages 742-749.
    7. César Henrique Mattos Pires & Felipe M. Pimenta & Carla A. D'Aquino & Osvaldo R. Saavedra & Xuerui Mao & Arcilan T. Assireu, 2020. "Coastal Wind Power in Southern Santa Catarina, Brazil," Energies, MDPI, vol. 13(19), pages 1-23, October.
    8. Jiang, Haiyan & Wang, Jianzhou & Wu, Jie & Geng, Wei, 2017. "Comparison of numerical methods and metaheuristic optimization algorithms for estimating parameters for wind energy potential assessment in low wind regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1199-1217.
    9. Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
    10. Guedes, Kevin S. & de Andrade, Carla F. & Rocha, Paulo A.C. & Mangueira, Rivanilso dos S. & de Moura, Elineudo P., 2020. "Performance analysis of metaheuristic optimization algorithms in estimating the parameters of several wind speed distributions," Applied Energy, Elsevier, vol. 268(C).
    11. Xu, Lei & Wang, Shengwei & Tang, Rui, 2019. "Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load," Applied Energy, Elsevier, vol. 237(C), pages 180-195.
    12. Arslan, Talha & Bulut, Y. Murat & Altın Yavuz, Arzu, 2014. "Comparative study of numerical methods for determining Weibull parameters for wind energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 820-825.
    13. Emilio Gómez-Lázaro & María C. Bueso & Mathieu Kessler & Sergio Martín-Martínez & Jie Zhang & Bri-Mathias Hodge & Angel Molina-García, 2016. "Probability Density Function Characterization for Aggregated Large-Scale Wind Power Based on Weibull Mixtures," Energies, MDPI, vol. 9(2), pages 1-15, February.
    14. He, J.Y. & Li, Q.S. & Chan, P.W. & Zhao, X.D., 2023. "Assessment of future wind resources under climate change using a multi-model and multi-method ensemble approach," Applied Energy, Elsevier, vol. 329(C).
    15. Guglielmo D’Amico & Giovanni Masala & Filippo Petroni & Robert Adam Sobolewski, 2020. "Managing Wind Power Generation via Indexed Semi-Markov Model and Copula," Energies, MDPI, vol. 13(16), pages 1-21, August.
    16. Akdağ, Seyit Ahmet & Güler, Önder, 2018. "Alternative Moment Method for wind energy potential and turbine energy output estimation," Renewable Energy, Elsevier, vol. 120(C), pages 69-77.
    17. Celik, Ali N. & Kolhe, Mohan, 2013. "Generalized feed-forward based method for wind energy prediction," Applied Energy, Elsevier, vol. 101(C), pages 582-588.
    18. Mazhar Hussain Baloch & Dahaman Ishak & Sohaib Tahir Chaudary & Baqir Ali & Ali Asghar Memon & Touqeer Ahmed Jumani, 2019. "Wind Power Integration: An Experimental Investigation for Powering Local Communities," Energies, MDPI, vol. 12(4), pages 1-24, February.
    19. Gugliani, G.K. & Sarkar, A. & Ley, C. & Mandal, S., 2018. "New methods to assess wind resources in terms of wind speed, load, power and direction," Renewable Energy, Elsevier, vol. 129(PA), pages 168-182.
    20. Alkhalidi, Mohamad A. & Al-Dabbous, Shoug Kh. & Neelamani, S. & Aldashti, Hassan A., 2019. "Wind energy potential at coastal and offshore locations in the state of Kuwait," Renewable Energy, Elsevier, vol. 135(C), pages 529-539.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:110:y:2013:i:c:p:285-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.