IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p6178-d1538968.html
   My bibliography  Save this article

A Novel Approach of −80 °C Cascade Refrigeration System Using Non-Flammable Quaternary Refrigerants for Semiconductor Process Applications

Author

Listed:
  • Su-Been Lee

    (Department of Refrigeration and Air-Conditioning Engineering, College of Engineering, Pukyong National University, 45, Yongso-ro, Nam-gu, Busan 48513, Republic of Korea)

  • Chang-Hyo Son

    (Department of Refrigeration and Air-Conditioning Engineering, College of Engineering, Pukyong National University, 45, Yongso-ro, Nam-gu, Busan 48513, Republic of Korea)

  • Joon-Hyuk Lee

    (Department of Refrigeration and Air-Conditioning Engineering, College of Engineering, Pukyong National University, 45, Yongso-ro, Nam-gu, Busan 48513, Republic of Korea)

Abstract

Ultra-low temperature chillers have seen increasing demand with the advancement of semiconductor technology. Mixed refrigerant (MR) cascade refrigeration systems (CRSs) are widely utilized for their stability and high cooling performance at low temperatures. Extensive research has been conducted on optimizing MR, which has a significant impact on CRS performance. However, most previous studies have either fixed the system pressure or used the refrigeration effect as the sole performance indicator. This did not account for the potential of achieving higher performance with an optimal MR composition at the same target temperature. In this study, a detailed parametric analysis was performed to investigate how the mass fractions of high-, mid-, and low boiling point refrigerants affect the coefficient of performance (COP) and exergy in ultra-low temperature CRSs without fixing the suction pressure. The analysis revealed that at the point of maximum COP, the refrigeration effect was relatively low, highlighting the limitations of using the refrigeration effect alone as a performance indicator. Additionally, COP was found to inversely correlate with total exergy destruction. As cascade temperature increases, COP tends to decrease, emphasizing the need for appropriate cascade temperature selection for MR CRS performance. This study introduces a novel approach to optimizing MR composition under various operating conditions, contributing to the advancement of ultra-low temperature CRSs.

Suggested Citation

  • Su-Been Lee & Chang-Hyo Son & Joon-Hyuk Lee, 2024. "A Novel Approach of −80 °C Cascade Refrigeration System Using Non-Flammable Quaternary Refrigerants for Semiconductor Process Applications," Energies, MDPI, vol. 17(23), pages 1-22, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6178-:d:1538968
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/6178/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/6178/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Zhili & Liang, Youcai & Liu, Shengchun & Ji, Weichuan & Zang, Runqing & Liang, Rongzhen & Guo, Zhikai, 2016. "Comparative analysis of thermodynamic performance of a cascade refrigeration system for refrigerant couples R41/R404A and R23/R404A," Applied Energy, Elsevier, vol. 184(C), pages 19-25.
    2. Zhao, Wenxuan & Li, Hangxin & Wang, Shengwei, 2024. "A generic design optimization framework for semiconductor cleanroom air-conditioning systems integrating heat recovery and free cooling for enhanced energy performance," Energy, Elsevier, vol. 286(C).
    3. Sun, Zhili & Wang, Qifan & Xie, Zhiyuan & Liu, Shengchun & Su, Dandan & Cui, Qi, 2019. "Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system," Energy, Elsevier, vol. 170(C), pages 1170-1180.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min-Ju Jeon, 2022. "Experimental Analysis of the R744/R404A Cascade Refrigeration System with Internal Heat Exchanger. Part 2: Exergy Characteristics," Energies, MDPI, vol. 15(3), pages 1-20, February.
    2. Huang, Tao & Bacher, Peder & Møller, Jan Kloppenborg & D’Ettorre, Francesco & Markussen, Wiebke Brix, 2023. "A step towards digital operations—A novel grey-box approach for modelling the heat dynamics of ultra-low temperature freezing chambers," Applied Energy, Elsevier, vol. 349(C).
    3. Qin, Yanbin & Li, Nanxi & Zhang, Hua & Liu, Baolin, 2021. "Energy and exergy analysis of a Linde-Hampson refrigeration system using R170, R41 and R1132a as low-GWP refrigerant blend components to replace R23," Energy, Elsevier, vol. 229(C).
    4. Feng, Xu & Wu, Yuting & Du, Yanjun & Qi, Di, 2024. "Optimization and performance improvement of ultra-low temperature cascade refrigeration system based on the isentropic efficiency curve of single-screw compressor," Energy, Elsevier, vol. 298(C).
    5. Muhsin Kılıç, 2022. "Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling," Sustainability, MDPI, vol. 14(21), pages 1-38, October.
    6. Zhang, Zhaoli & Alelyani, Sami M. & Zhang, Nan & Zeng, Chao & Yuan, Yanping & Phelan, Patrick E., 2018. "Thermodynamic analysis of a novel sodium hydroxide-water solution absorption refrigeration, heating and power system for low-temperature heat sources," Applied Energy, Elsevier, vol. 222(C), pages 1-12.
    7. Min-Ju Jeon & Joon-Hyuk Lee, 2024. "Experimental Investigation of R404A Indirect Refrigeration System Applied Internal Heat Exchanger: Part 2—Exergy Characteristics," Energies, MDPI, vol. 17(16), pages 1-17, August.
    8. Hao, Xinyue & Wang, Lin & Wang, Zhanwei & Tan, Yingying & Yan, Xiaona, 2018. "Hybrid auto-cascade refrigeration system coupled with a heat-driven ejector cooling cycle," Energy, Elsevier, vol. 161(C), pages 988-998.
    9. Min-Ju Jeon, 2021. "Experimental Analysis of the R744/R404A Cascade Refrigeration System with Internal Heat Exchanger. Part 1: Coefficient of Performance Characteristics," Energies, MDPI, vol. 14(18), pages 1-20, September.
    10. Li, Jing & Gao, Guangtao & Kutlu, Cagri & Liu, Keliang & Pei, Gang & Su, Yuehong & Ji, Jie & Riffat, Saffa, 2019. "A novel approach to thermal storage of direct steam generation solar power systems through two-step heat discharge," Applied Energy, Elsevier, vol. 236(C), pages 81-100.
    11. Jeon, Yongseok & Kim, Sunjae & Lee, Sang Hun & Chung, Hyun Joon & Kim, Yongchan, 2020. "Seasonal energy performance characteristics of novel ejector-expansion air conditioners with low-GWP refrigerants," Applied Energy, Elsevier, vol. 278(C).
    12. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Guo, Zhikai & Chen, Jiangping, 2019. "Experimental energetic analysis of CO2/R41 blends in automobile air-conditioning and heat pump systems," Applied Energy, Elsevier, vol. 239(C), pages 1142-1153.
    13. Min-Ju Jeon & Joon-Hyuk Lee, 2024. "Thermodynamic Comparative Analysis of Cascade Refrigeration System Pairing R744 with R404A, R448A, and R449A with Internal Heat Exchanger: Part 1—Coefficient of Performance Characteristics," Energies, MDPI, vol. 17(17), pages 1-23, September.
    14. Qin, Yanbin & Li, Nanxi & Zhang, Hua & Jin, Binhui & Liu, Baolin, 2022. "Experimental characterization of an innovative refrigeration system coupled with Linde-Hampson cycle and auto-cascade cycle for multi-stage refrigeration temperature applications," Energy, Elsevier, vol. 240(C).
    15. Santosh Kumar Saini & Mani Sankar Dasgupta & Kristina Norne Widell & Souvik Bhattacharyya, 2022. "Comparative investigation of low GWP pure fluids as potential refrigerant options for a cascade system in seafood application," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-27, December.
    16. Xinyu Meng & Yijian He & Lijuan He & Chenlei Zhao & Lifang Wang & Wenxi You & Jingbo Zhu, 2024. "A Review of the Energy-Saving Potential of Phase Change Material-Based Cascaded Refrigeration Systems in Chinese Food Cold Chain Industry," Energies, MDPI, vol. 17(19), pages 1-28, September.
    17. Razmi, Amir Reza & Arabkoohsar, Ahmad & Nami, Hossein, 2020. "Thermoeconomic analysis and multi-objective optimization of a novel hybrid absorption/recompression refrigeration system," Energy, Elsevier, vol. 210(C).
    18. Larry Orobome Agberegha & Peter Alenoghena Aigba & Solomon Chuka Nwigbo & Francis Onoroh & Olusegun David Samuel & Tanko Bako & Oguzhan Der & Ali Ercetin & Ramazan Sener, 2024. "Investigation of a Hybridized Cascade Trigeneration Cycle Combined with a District Heating and Air Conditioning System Using Vapour Absorption Refrigeration Cooling: Energy and Exergy Assessments," Energies, MDPI, vol. 17(6), pages 1-34, March.
    19. Yu, Azhi & Ye, Qing & Li, Jinlong & Li, Xinhao & Wang, Yao & Rui, Qingqing, 2024. "Economic, environmental, energy, exergy (4E) analysis and simulated annealing algorithm optimization of dividing-wall column-intensified heterogeneous azeotropic pressure-swing distillation process," Energy, Elsevier, vol. 296(C).
    20. Nikitin, Andrey & Farahnak, Mehdi & Deymi-Dashtebayaz, Mahdi & Muraveinikov, Sergei & Nikitina, Veronika & Nazeri, Reza, 2022. "Effect of ice thickness and snow cover depth on performance optimization of ground source heat pump based on the energy, exergy, economic and environmental analysis," Renewable Energy, Elsevier, vol. 185(C), pages 1301-1317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6178-:d:1538968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.