IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p1251-d744737.html
   My bibliography  Save this article

Experimental Analysis of the R744/R404A Cascade Refrigeration System with Internal Heat Exchanger. Part 2: Exergy Characteristics

Author

Listed:
  • Min-Ju Jeon

    (Department of Refrigeration and Air-Conditioning Engineering, College of Engineering, Chonnam National University, 50, Daehak-ro, Yeosu 59626, Korea)

Abstract

This paper examines the exergy efficiency and exergy destruction rate of the R744/R404A cascade refrigeration system (CRS) using an internal heat exchanger in supermarkets according to various conditions affecting the system. A refrigerant of a low-temperature cycle uses R744 and a refrigerant of a high-temperature cycle in the CRS uses R404A. Experiments were conducted by changing various conditions on the high- and low-temperature side, and exergy analysis was performed accordingly. The main results are summarized as follows: (1) the lower the total exergy destruction rate of the CRS, the higher the exergy efficiency of the system, and accordingly the coefficient of performance (COP) of the system is also improved. (2) In the CRS, since the optimum cascade evaporation temperature exists (about −16 °C), it can be said that the limit point, that is, the cascade evaporation temperature with the maximum COP of the system, is the optimum point at about −16 °C. Therefore, at this optimum point, the exergy destruction rate of the cascade heat exchanger becomes the minimum. In other words, it should be noted that when the cascade evaporation temperature is the optimum point, the exergy destruction rate of the R744 compressor and the cascade heat exchanger is minimal. The purpose of this study is to provide basic design data by analyzing the exergy characteristics according to various conditions on the high- and low-temperature side for optimal design of a CRS to which R744 is applied.

Suggested Citation

  • Min-Ju Jeon, 2022. "Experimental Analysis of the R744/R404A Cascade Refrigeration System with Internal Heat Exchanger. Part 2: Exergy Characteristics," Energies, MDPI, vol. 15(3), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1251-:d:744737
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/1251/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/1251/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Zhili & Wang, Qifan & Xie, Zhiyuan & Liu, Shengchun & Su, Dandan & Cui, Qi, 2019. "Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system," Energy, Elsevier, vol. 170(C), pages 1170-1180.
    2. Min-Ju Jeon, 2021. "Experimental Analysis of the R744/R404A Cascade Refrigeration System with Internal Heat Exchanger. Part 1: Coefficient of Performance Characteristics," Energies, MDPI, vol. 14(18), pages 1-20, September.
    3. Tsatsaronis, George, 2007. "Definitions and nomenclature in exergy analysis and exergoeconomics," Energy, Elsevier, vol. 32(4), pages 249-253.
    4. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    5. Sun, Zhili & Liang, Youcai & Liu, Shengchun & Ji, Weichuan & Zang, Runqing & Liang, Rongzhen & Guo, Zhikai, 2016. "Comparative analysis of thermodynamic performance of a cascade refrigeration system for refrigerant couples R41/R404A and R23/R404A," Applied Energy, Elsevier, vol. 184(C), pages 19-25.
    6. Mingzhang Pan & Huan Zhao & Dongwu Liang & Yan Zhu & Youcai Liang & Guangrui Bao, 2020. "A Review of the Cascade Refrigeration System," Energies, MDPI, vol. 13(9), pages 1-26, May.
    7. Bai, Tao & Yu, Jianlin & Yan, Gang, 2016. "Advanced exergy analysis on a modified auto-cascade freezer cycle with an ejector," Energy, Elsevier, vol. 113(C), pages 385-398.
    8. Morosuk, T. & Tsatsaronis, G., 2009. "Advanced exergetic evaluation of refrigeration machines using different working fluids," Energy, Elsevier, vol. 34(12), pages 2248-2258.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Tao & Bacher, Peder & Møller, Jan Kloppenborg & D’Ettorre, Francesco & Markussen, Wiebke Brix, 2023. "A step towards digital operations—A novel grey-box approach for modelling the heat dynamics of ultra-low temperature freezing chambers," Applied Energy, Elsevier, vol. 349(C).
    2. Min-Ju Jeon, 2021. "Experimental Analysis of the R744/R404A Cascade Refrigeration System with Internal Heat Exchanger. Part 1: Coefficient of Performance Characteristics," Energies, MDPI, vol. 14(18), pages 1-20, September.
    3. Querol, E. & Gonzalez-Regueral, B. & Ramos, A. & Perez-Benedito, J.L., 2011. "Novel application for exergy and thermoeconomic analysis of processes simulated with Aspen Plus®," Energy, Elsevier, vol. 36(2), pages 964-974.
    4. Adrian Bejan & George Tsatsaronis, 2021. "Purpose in Thermodynamics," Energies, MDPI, vol. 14(2), pages 1-25, January.
    5. Khoshgoftar Manesh, M.H. & Navid, P. & Blanco Marigorta, A.M. & Amidpour, M. & Hamedi, M.H., 2013. "New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses," Energy, Elsevier, vol. 59(C), pages 314-333.
    6. Feng, Xu & Wu, Yuting & Du, Yanjun & Qi, Di, 2024. "Optimization and performance improvement of ultra-low temperature cascade refrigeration system based on the isentropic efficiency curve of single-screw compressor," Energy, Elsevier, vol. 298(C).
    7. Muhsin Kılıç, 2022. "Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling," Sustainability, MDPI, vol. 14(21), pages 1-38, October.
    8. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    9. Silveira, Jose Luz & Lamas, Wendell de Queiroz & Tuna, Celso Eduardo & Villela, Iraides Aparecida de Castro & Miro, Laura Siso, 2012. "Ecological efficiency and thermoeconomic analysis of a cogeneration system at a hospital," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2894-2906.
    10. Coban, Kahraman & Şöhret, Yasin & Colpan, C. Ozgur & Karakoç, T. Hikmet, 2017. "Exergetic and exergoeconomic assessment of a small-scale turbojet fuelled with biodiesel," Energy, Elsevier, vol. 140(P2), pages 1358-1367.
    11. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
    12. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    13. Hao, Xinyue & Wang, Lin & Wang, Zhanwei & Tan, Yingying & Yan, Xiaona, 2018. "Hybrid auto-cascade refrigeration system coupled with a heat-driven ejector cooling cycle," Energy, Elsevier, vol. 161(C), pages 988-998.
    14. Mohammadkhani, F. & Shokati, N. & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2014. "Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles," Energy, Elsevier, vol. 65(C), pages 533-543.
    15. Akbulut, Ugur & Utlu, Zafer & Kincay, Olcay, 2016. "Exergy, exergoenvironmental and exergoeconomic evaluation of a heat pump-integrated wall heating system," Energy, Elsevier, vol. 107(C), pages 502-522.
    16. Zhao, Hongxia & Yuan, Tianpeng & Gao, Jia & Wang, Xinli & Yan, Jia, 2019. "Conventional and advanced exergy analysis of parallel and series compression-ejection hybrid refrigeration system for a household refrigerator with R290," Energy, Elsevier, vol. 166(C), pages 845-861.
    17. Gürtürk, Mert & Oztop, Hakan F. & Hepbasli, Arif, 2015. "Comparison of exergoeconomic analysis of two different perlite expansion furnaces," Energy, Elsevier, vol. 80(C), pages 589-598.
    18. Morosuk, Tatiana & Tsatsaronis, George, 2019. "Advanced exergy-based methods used to understand and improve energy-conversion systems," Energy, Elsevier, vol. 169(C), pages 238-246.
    19. Ustaoglu, Abid, 2020. "Parametric study of absorption refrigeration with vapor compression refrigeration cycle using wet, isentropic and azeotropic working fluids: Conventional and advanced exergy approach," Energy, Elsevier, vol. 201(C).
    20. Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1251-:d:744737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.