IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4481-d1472716.html
   My bibliography  Save this article

Thermodynamic Comparative Analysis of Cascade Refrigeration System Pairing R744 with R404A, R448A, and R449A with Internal Heat Exchanger: Part 1—Coefficient of Performance Characteristics

Author

Listed:
  • Min-Ju Jeon

    (Department of Refrigeration and Air-Conditioning Engineering, College of Engineering, Pukyong National University, 45, Yongso-ro, Nam-gu, Busan 48513, Republic of Korea)

  • Joon-Hyuk Lee

    (Department of Refrigeration and Air-Conditioning Engineering, College of Engineering, Pukyong National University, 45, Yongso-ro, Nam-gu, Busan 48513, Republic of Korea)

Abstract

The R744/R404A cascade refrigeration system (CRS) has been widely used in supermarkets and hypermarkets, but due to the refrigerant regulation of R404A, research on alternative refrigerants is necessary. In addition, although there have been quite a few studies on R448A and R449A, which are well-known alternatives to R404A, few studies have analyzed the performance coefficients of the three refrigerants, and the studies that have analyzed them are not based on enough variables. Therefore, we aimed to understand the performance characteristics of CRS combined with an internal heat exchanger (IHX) by applying R744 for the low-temperature cycle (LTC) and R404A, R448A, and R449A for the high-temperature cycle (HTC). The analysis method was to analyze the coefficient of performance (COP) and mass flow rate (MFR) of the three refrigerants according to the degree of subcooling (DSC) and degree of superheating (DSH), IHX efficiency, temperature difference in the cascade heat exchanger (CHX), condensation temperature (CT), evaporation temperature (ET), and cascade evaporation temperature (CET). The purpose of this study is to compare R448A and R449A, alternative refrigerants to R404A, in an R744/R404A CRS, with R404A to provide sufficient data for optimal CRS design. The comparison results are as follows: (1) Compared with R404A, the MFR of R448A and R449A are 67.27–77.6% and 70.05–80.80%, respectively, under the same conditions. Therefore, R448A and R449A are economically favorable because they have less refrigerant charge than R404A, and R448A is more favorable than R449A. (2) The R744/R448A CRS is stable and performs better than the R744/R449A CRS in places with large changes in the surrounding environment.

Suggested Citation

  • Min-Ju Jeon & Joon-Hyuk Lee, 2024. "Thermodynamic Comparative Analysis of Cascade Refrigeration System Pairing R744 with R404A, R448A, and R449A with Internal Heat Exchanger: Part 1—Coefficient of Performance Characteristics," Energies, MDPI, vol. 17(17), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4481-:d:1472716
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4481/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4481/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Zhili & Liang, Youcai & Liu, Shengchun & Ji, Weichuan & Zang, Runqing & Liang, Rongzhen & Guo, Zhikai, 2016. "Comparative analysis of thermodynamic performance of a cascade refrigeration system for refrigerant couples R41/R404A and R23/R404A," Applied Energy, Elsevier, vol. 184(C), pages 19-25.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhaoli & Alelyani, Sami M. & Zhang, Nan & Zeng, Chao & Yuan, Yanping & Phelan, Patrick E., 2018. "Thermodynamic analysis of a novel sodium hydroxide-water solution absorption refrigeration, heating and power system for low-temperature heat sources," Applied Energy, Elsevier, vol. 222(C), pages 1-12.
    2. Min-Ju Jeon, 2022. "Experimental Analysis of the R744/R404A Cascade Refrigeration System with Internal Heat Exchanger. Part 2: Exergy Characteristics," Energies, MDPI, vol. 15(3), pages 1-20, February.
    3. Min-Ju Jeon & Joon-Hyuk Lee, 2024. "Experimental Investigation of R404A Indirect Refrigeration System Applied Internal Heat Exchanger: Part 2—Exergy Characteristics," Energies, MDPI, vol. 17(16), pages 1-17, August.
    4. Hao, Xinyue & Wang, Lin & Wang, Zhanwei & Tan, Yingying & Yan, Xiaona, 2018. "Hybrid auto-cascade refrigeration system coupled with a heat-driven ejector cooling cycle," Energy, Elsevier, vol. 161(C), pages 988-998.
    5. Huang, Tao & Bacher, Peder & Møller, Jan Kloppenborg & D’Ettorre, Francesco & Markussen, Wiebke Brix, 2023. "A step towards digital operations—A novel grey-box approach for modelling the heat dynamics of ultra-low temperature freezing chambers," Applied Energy, Elsevier, vol. 349(C).
    6. Min-Ju Jeon, 2021. "Experimental Analysis of the R744/R404A Cascade Refrigeration System with Internal Heat Exchanger. Part 1: Coefficient of Performance Characteristics," Energies, MDPI, vol. 14(18), pages 1-20, September.
    7. Li, Jing & Gao, Guangtao & Kutlu, Cagri & Liu, Keliang & Pei, Gang & Su, Yuehong & Ji, Jie & Riffat, Saffa, 2019. "A novel approach to thermal storage of direct steam generation solar power systems through two-step heat discharge," Applied Energy, Elsevier, vol. 236(C), pages 81-100.
    8. Jeon, Yongseok & Kim, Sunjae & Lee, Sang Hun & Chung, Hyun Joon & Kim, Yongchan, 2020. "Seasonal energy performance characteristics of novel ejector-expansion air conditioners with low-GWP refrigerants," Applied Energy, Elsevier, vol. 278(C).
    9. Qin, Yanbin & Li, Nanxi & Zhang, Hua & Liu, Baolin, 2021. "Energy and exergy analysis of a Linde-Hampson refrigeration system using R170, R41 and R1132a as low-GWP refrigerant blend components to replace R23," Energy, Elsevier, vol. 229(C).
    10. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Guo, Zhikai & Chen, Jiangping, 2019. "Experimental energetic analysis of CO2/R41 blends in automobile air-conditioning and heat pump systems," Applied Energy, Elsevier, vol. 239(C), pages 1142-1153.
    11. Feng, Xu & Wu, Yuting & Du, Yanjun & Qi, Di, 2024. "Optimization and performance improvement of ultra-low temperature cascade refrigeration system based on the isentropic efficiency curve of single-screw compressor," Energy, Elsevier, vol. 298(C).
    12. Liang, Jierong & Sun, Li & Li, Tingxun, 2018. "A novel defrosting method in gasoline vapor recovery application," Energy, Elsevier, vol. 163(C), pages 751-765.
    13. Sun, Zhili & Wang, Qifan & Xie, Zhiyuan & Liu, Shengchun & Su, Dandan & Cui, Qi, 2019. "Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system," Energy, Elsevier, vol. 170(C), pages 1170-1180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4481-:d:1472716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.