IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5911-d1528942.html
   My bibliography  Save this article

Simultaneous Optimization of Network Reconfiguration and Soft Open Points Placement in Radial Distribution Systems Using a Lévy Flight-Based Improved Equilibrium Optimizer

Author

Listed:
  • Ridha Djamel Mohammedi

    (Laboratory of Applied Automation and Industrial Diagnostics (LAADI), Faculty of Sciences and Technology, Ziane Achour University of Djelfa, Djelfa 17000, Algeria)

  • Djamal Gozim

    (Department of Electrical Engineering, Ziane Achour University of Djelfa, Djelfa 17000, Algeria)

  • Abdellah Kouzou

    (Laboratory of Applied Automation and Industrial Diagnostics (LAADI), Faculty of Sciences and Technology, Ziane Achour University of Djelfa, Djelfa 17000, Algeria)

  • Mustafa Mosbah

    (Faculty of Science and Technology, Université de Ghardaia, Ghardaia 47000, Algeria)

  • Ahmed Hafaifa

    (Laboratory of Applied Automation and Industrial Diagnostics (LAADI), Faculty of Sciences and Technology, Ziane Achour University of Djelfa, Djelfa 17000, Algeria)

  • Jose Rodriguez

    (Director Center for Energy Transition, Universidad San Sebastián, Santiago 8420524, Chile)

  • Mohamed Abdelrahem

    (Department of Electrical Engineering, Faculty of Engineering, Assiut University, Assiut 71516, Egypt
    Chair of High-Power Converter Systems, Technical University of Munich, 80333 Munich, Germany)

Abstract

This research paper focuses on the application of a new method for the simultaneous reconfiguration and the optimum placing of Soft Open Points (SOPs) in Radial Distribution Systems (RDS). The proposed Lévy Flight-based Improved Equilibrium Optimizer (LF-IEO) algorithm enhances the standard Equilibrium Optimizer (EO) by integrating several techniques to improve exploration and exploitation capabilities. SOPs are highly developed power electronics devices that can enhance distribution utility networks in terms of reliability and effectiveness. However, identifying their optimum place along with network reconfiguration is a challenging task that requires advanced computation techniques. The performance of the proposed LF-IEO algorithm has been first verified on several benchmark functions. Subsequently, it is implemented on a IEEE 33-Bus, 69-Bus, 118-Bus, and Algerian 116-Bus distribution network to solve the problem of simultaneous network reconfiguration and optimal SOP placement. For the Algerian 116-bus system case study, the algorithm achieved a significant 14.89% reduction in power losses, improved the minimum voltage, and generated substantial net annual savings of 74,426.40 $/year. To prove its superiority in terms of solution quality and robustness, the proposed LF-IEO approach was compared with several newly developed algorithms from the literature.

Suggested Citation

  • Ridha Djamel Mohammedi & Djamal Gozim & Abdellah Kouzou & Mustafa Mosbah & Ahmed Hafaifa & Jose Rodriguez & Mohamed Abdelrahem, 2024. "Simultaneous Optimization of Network Reconfiguration and Soft Open Points Placement in Radial Distribution Systems Using a Lévy Flight-Based Improved Equilibrium Optimizer," Energies, MDPI, vol. 17(23), pages 1-37, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5911-:d:1528942
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5911/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5911/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soha Mansour & Ahmed O. Badr & Mahmoud A. Attia & Mariam A. Sameh & Hossam Kotb & Elmazeg Elgamli & Mokhtar Shouran, 2022. "Fuzzy Logic Controller Equilibrium Base to Enhance AGC System Performance with Renewable Energy Disturbances," Energies, MDPI, vol. 15(18), pages 1-18, September.
    2. Guocheng Liu & Weiqing Sun & Haoyun Hong & Gang Shi, 2024. "Coordinated Configuration of SOPs and DESSs in an Active Distribution Network Considering Social Welfare Maximization," Sustainability, MDPI, vol. 16(6), pages 1-20, March.
    3. Wang, Ke & Xue, Yixun & Zhou, Yue & Li, Zening & Chang, Xinyue & Sun, Hongbin, 2024. "Distributed coordinated reconfiguration with soft open points for resilience-oriented restoration in integrated electric and heating systems," Applied Energy, Elsevier, vol. 365(C).
    4. Ding, Bing & Li, Zening & Li, Zhengmao & Xue, Yixun & Chang, Xinyue & Su, Jia & Jin, Xiaolong & Sun, Hongbin, 2024. "A CCP-based distributed cooperative operation strategy for multi-agent energy systems integrated with wind, solar, and buildings," Applied Energy, Elsevier, vol. 365(C).
    5. Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
    6. Cao, Wanyu & Wu, Jianzhong & Jenkins, Nick & Wang, Chengshan & Green, Timothy, 2016. "Benefits analysis of Soft Open Points for electrical distribution network operation," Applied Energy, Elsevier, vol. 165(C), pages 36-47.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.
    2. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    3. Irina I. Picioroaga & Andrei M. Tudose & Dorian O. Sidea & Constantin Bulac, 2022. "Supply Restoration in Active Distribution Networks Based on Soft Open Points with Embedded DC Microgrids," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
    4. Bai, Linquan & Jiang, Tao & Li, Fangxing & Chen, Houhe & Li, Xue, 2018. "Distributed energy storage planning in soft open point based active distribution networks incorporating network reconfiguration and DG reactive power capability," Applied Energy, Elsevier, vol. 210(C), pages 1082-1091.
    5. Juan Noh & Seungjun Gham & Myungseok Yoon & Wookyu Chae & Woohyun Kim & Sungyun Choi, 2023. "A Study on a Communication-Based Algorithm to Improve Protection Coordination under High-Impedance Fault in Networked Distribution Systems," Sustainability, MDPI, vol. 15(21), pages 1-19, October.
    6. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Wu, Jianzhong, 2018. "Quantified flexibility evaluation of soft open points to improve distributed generator penetration in active distribution networks based on difference-of-convex programming," Applied Energy, Elsevier, vol. 218(C), pages 338-348.
    7. Ricardo de Oliveira & Leonardo Willer de Oliveira & Edimar José de Oliveira, 2023. "Optimization Approach for Planning Soft Open Points in a MV-Distribution System to Maximize the Hosting Capacity," Energies, MDPI, vol. 16(3), pages 1-22, January.
    8. Aithal, Avinash & Li, Gen & Wu, Jianzhong & Yu, James, 2018. "Performance of an electrical distribution network with Soft Open Point during a grid side AC fault," Applied Energy, Elsevier, vol. 227(C), pages 262-272.
    9. Ibrahim Diaaeldin & Shady Abdel Aleem & Ahmed El-Rafei & Almoataz Abdelaziz & Ahmed F. Zobaa, 2019. "Optimal Network Reconfiguration in Active Distribution Networks with Soft Open Points and Distributed Generation," Energies, MDPI, vol. 12(21), pages 1-31, November.
    10. Deakin, Matthew & Sarantakos, Ilias & Greenwood, David & Bialek, Janusz & Taylor, Phil C. & Walker, Sara, 2023. "Comparative analysis of services from soft open points using cost–benefit analysis," Applied Energy, Elsevier, vol. 333(C).
    11. Bastami, Houman & Shakarami, Mahmoud Reza & Doostizadeh, Meysam, 2021. "A decentralized cooperative framework for multi-area active distribution network in presence of inter-area soft open points," Applied Energy, Elsevier, vol. 300(C).
    12. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Wu, Jianzhong, 2018. "SOP-based islanding partition method of active distribution networks considering the characteristics of DG, energy storage system and load," Energy, Elsevier, vol. 155(C), pages 312-325.
    13. Escalera, Alberto & Prodanović, Milan & Castronuovo, Edgardo D. & Roldan-Perez, Javier, 2020. "Contribution of active management technologies to the reliability of power distribution networks," Applied Energy, Elsevier, vol. 267(C).
    14. Zhengqi Wang & Haoyu Zhou & Hongyu Su, 2022. "Disturbance Observer-Based Model Predictive Super-Twisting Control for Soft Open Point," Energies, MDPI, vol. 15(10), pages 1-19, May.
    15. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Ding, Fei & Wu, Jianzhong, 2017. "An enhanced SOCP-based method for feeder load balancing using the multi-terminal soft open point in active distribution networks," Applied Energy, Elsevier, vol. 208(C), pages 986-995.
    16. Qi, Qi & Wu, Jianzhong & Long, Chao, 2017. "Multi-objective operation optimization of an electrical distribution network with soft open point," Applied Energy, Elsevier, vol. 208(C), pages 734-744.
    17. Wu, Pan & Huang, Wentao & Tai, Nengling & Liang, Shuo, 2018. "A novel design of architecture and control for multiple microgrids with hybrid AC/DC connection," Applied Energy, Elsevier, vol. 210(C), pages 1002-1016.
    18. Zhang, Lu & Shen, Chen & Chen, Ying & Huang, Shaowei & Tang, Wei, 2018. "Coordinated allocation of distributed generation, capacitor banks and soft open points in active distribution networks considering dispatching results," Applied Energy, Elsevier, vol. 231(C), pages 1122-1131.
    19. Mohd Bilal & Pitshou N. Bokoro & Gulshan Sharma & Giovanni Pau, 2024. "A Cost-Effective Energy Management Approach for On-Grid Charging of Plug-in Electric Vehicles Integrated with Hybrid Renewable Energy Sources," Energies, MDPI, vol. 17(16), pages 1-35, August.
    20. Xu Tang & Jingwen Zheng & Zhichun Yang & Xiangling He & Huaidong Min & Sihan Zhou & Kaipei Liu & Liang Qin, 2023. "A Fully Decentralized Optimal Dispatch Scheme for an AC–DC Hybrid Distribution Network Formed by Flexible Interconnected Distribution Station Areas," Sustainability, MDPI, vol. 15(14), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5911-:d:1528942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.