IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5838-d1526514.html
   My bibliography  Save this article

The Impact of Water Injection and Hydrogen Fuel on Performance and Emissions in a Hydrogen/Diesel Dual-Fuel Engine

Author

Listed:
  • Ashley Sharkey

    (School of Engineering, Deakin University, Waurn Ponds 3216, Australia)

  • Ali Zare

    (School of Engineering, Deakin University, Waurn Ponds 3216, Australia)

Abstract

As the need for alternative energy sources and reduced emissions grows, proven technologies are often sidelined in favour of emerging solutions that lack the infrastructure for mass adoption. This study explores a transitional approach by modifying existing compression ignition engines to run on a hydrogen/diesel mixture for performance improvement, utilising water injection to mitigate the drawbacks associated with hydrogen combustion. This approach can yield favourable results with current technology. In this modelling study, ten hydrogen energy ratios (0–90%) and nine water injection rates (0–700 mg/cycle) were tested in a turbocharged Cummins ISBe 220 31 six-cylinder diesel engine. An engine experiment was conducted to validate the model. Key performance indicators such as power, mechanical efficiency, thermal efficiency, indicated mean effective pressure (IMEP), and brake-specific fuel consumption (BSFC) were measured. Both water injection and hydrogen injection led to slight improvements in all performance metrics, except BSFC, due to hydrogen’s lower energy density. In terms of emissions, CO and CO 2 levels significantly decreased as hydrogen content increased, with reductions of 94% and 96%, respectively, at 90% hydrogen compared to the baseline diesel. Water injection at peak rates further reduced CO emissions by approximately 40%, though it had minimal effect on CO 2 . As expected, NOx (which is a typical challenge with hydrogen combustion and also with diesel engines in general) increased with hydrogen fuelling, resulting in an approximately 70% increase in total NOx emissions over the range of 0–90% hydrogen energy. Similar increases were observed in NO and NO 2 , e.g., 90% and 57% increases with 90% hydrogen, respectively. However, water injection reduced NO and NO 2 levels by up to 16% and 83%, respectively, resulting in a net decrease in NO X emissions in many combined cases, not only with hydrogen injection but also when compared to baseline diesel.

Suggested Citation

  • Ashley Sharkey & Ali Zare, 2024. "The Impact of Water Injection and Hydrogen Fuel on Performance and Emissions in a Hydrogen/Diesel Dual-Fuel Engine," Energies, MDPI, vol. 17(23), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5838-:d:1526514
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5838/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5838/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saugirdas Pukalskas & Vidas Korsakas & Tomas Stankevičius & Donatas Kriaučiūnas & Šarūnas Mikaliūnas, 2024. "Effect of Water Injection on Combustion and Emissions Parameters of SI Engine Fuelled by Hydrogen–Natural Gas Blends," Energies, MDPI, vol. 17(9), pages 1-16, April.
    2. Dániel Szőllősi & Péter Kiss, 2024. "Effects of Water Injection in Diesel Engine Emission Treatment System—A Review in the Light of EURO 7," Energies, MDPI, vol. 17(20), pages 1-29, October.
    3. Xiaole Liu & Shaohua Liu & Lizhong Shen & Yuhua Bi & Longjin Duan, 2023. "Study on the Effects of the Hydrogen Substitution Rate on the Performance of a Hydrogen–Diesel Dual-Fuel Engine under Different Loads," Energies, MDPI, vol. 16(16), pages 1-20, August.
    4. Wenyu Gu & Wanhua Su, 2023. "Study on the Effect of Exhaust Gas Recirculation Coupled Variable Geometry Turbocharger and Fuel Quantity Control on Transient Performance of Turbocharged Diesel Engine," Energies, MDPI, vol. 16(16), pages 1-20, August.
    5. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Alrazen, Hayder A. & Abu Talib, A.R. & Adnan, R. & Ahmad, K.A., 2016. "A review of the effect of hydrogen addition on the performance and emissions of the compression – Ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 785-796.
    7. Arianna Baldinelli & Marco Francesconi & Marco Antonelli, 2024. "Hydrogen, E-Fuels, Biofuels: What Is the Most Viable Alternative to Diesel for Heavy-Duty Internal Combustion Engine Vehicles?," Energies, MDPI, vol. 17(18), pages 1-16, September.
    8. Chen, Zaiwang & Cai, Yikang & Xu, Guangfu & Duan, Huiquan & Jia, Ming, 2022. "Exploring the potential of water injection (WI) in a high-load diesel engine under different fuel injection strategies," Energy, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Na Yeon An & Jung Hyun Yang & Eunyong Song & Sung-Ho Hwang & Hyung-Gi Byun & Sanguk Park, 2024. "Digital Twin-Based Hydrogen Refueling Station (HRS) Safety Model: CNN-Based Decision-Making and 3D Simulation," Sustainability, MDPI, vol. 16(21), pages 1-26, October.
    2. Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun, 2024. "Intelligent hydrogen-ammonia combined energy storage system with deep reinforcement learning," Renewable Energy, Elsevier, vol. 237(PB).
    3. Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.
    4. Beata Kurc & Xymena Gross & Natalia Szymlet & Łukasz Rymaniak & Krystian Woźniak & Marita Pigłowska, 2024. "Hydrogen-Powered Vehicles: A Paradigm Shift in Sustainable Transportation," Energies, MDPI, vol. 17(19), pages 1-38, September.
    5. Radu-George Ciocarlan & Judit Farrando-Perez & Daniel Arenas-Esteban & Maarten Houlleberghs & Luke L. Daemen & Yongqiang Cheng & Anibal J. Ramirez-Cuesta & Eric Breynaert & Johan Martens & Sara Bals &, 2024. "Tuneable mesoporous silica material for hydrogen storage application via nano-confined clathrate hydrate construction," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Serrano, J. & Jiménez-Espadafor, F.J. & López, A., 2019. "Analysis of the effect of the hydrogen as main fuel on the performance of a modified compression ignition engine with water injection," Energy, Elsevier, vol. 173(C), pages 911-925.
    7. Liufei Shen & Cheng Zhang & Feiyue Shan & Long Chen & Shuai Liu & Zhiqiang Zheng & Litong Zhu & Jinduo Wang & Xingzheng Wu & Yujia Zhai, 2024. "Review and Prospects of Key Technologies for Integrated Systems in Hydrogen Production from Offshore Superconducting Wind Power," Energies, MDPI, vol. 18(1), pages 1-17, December.
    8. Rimkus, Alfredas & Matijošius, Jonas & Bogdevičius, Marijonas & Bereczky, Ákos & Török, Ádám, 2018. "An investigation of the efficiency of using O2 and H2 (hydrooxile gas -HHO) gas additives in a ci engine operating on diesel fuel and biodiesel," Energy, Elsevier, vol. 152(C), pages 640-651.
    9. Stucchi, Leonardo & Bocchiola, Daniele & Simoni, Camilla & Ambrosini, Stefano Romano & Bianchi, Alberto & Rosso, Renzo, 2023. "Future hydropower production under the framework of NextGenerationEU: The case of Santa Giustina reservoir in Italian Alps," Renewable Energy, Elsevier, vol. 215(C).
    10. Ricardo Suarez-Bertoa & Roberto Gioria & Christian Ferrarese & Lorenzo Finocchiaro & Barouch Giechaskiel, 2024. "Alternative Analyzers for the Measurement of Gaseous Compounds During Type-Approval of Heavy-Duty Vehicles," Energies, MDPI, vol. 17(22), pages 1-18, November.
    11. Dániel Szőllősi & Péter Kiss, 2024. "Effects of Water Injection in Diesel Engine Emission Treatment System—A Review in the Light of EURO 7," Energies, MDPI, vol. 17(20), pages 1-29, October.
    12. Han, Guopeng & Yao, Anren & Yao, Chunde & Wu, Taoyang & Wang, Bin & Wei, Hongyuan, 2017. "Mechanism analysis on controllable methanol quick combustion," Applied Energy, Elsevier, vol. 206(C), pages 558-567.
    13. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    14. Federico Ricci & Massimiliano Avana & Francesco Mariani, 2025. "Artificial Neural Networks as a Tool for High-Accuracy Prediction of In-Cylinder Pressure and Equivalent Flame Radius in Hydrogen-Fueled Internal Combustion Engines," Energies, MDPI, vol. 18(2), pages 1-23, January.
    15. Jimiao Zhang & Jie Li, 2024. "Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future," Energies, MDPI, vol. 17(16), pages 1-26, August.
    16. Wen, Du & Aziz, Muhammad, 2024. "Perspective of staged hydrogen economy in Japan: A case study based on the data-driven method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    17. Alberto Abánades, 2022. "Perspectives on Hydrogen," Energies, MDPI, vol. 16(1), pages 1-7, December.
    18. Serrano, José Ramón & Martín, Jaime & Piqueras, Pedro & Tabet, Roberto & Gómez, Javier, 2023. "Effect of natural and forced charge air humidity on the performance and emissions of a compression-ignition engine operating at high warm altitude," Energy, Elsevier, vol. 266(C).
    19. Yang Ye & Ziyang Zhang & Yuanyuan Zhang & Jingjing Liu & Kai Yan & Honghui Cheng, 2024. "Parametric Analysis of a Novel Array-Type Hydrogen Storage Reactor with External Water-Cooled Jacket Heat Exchange," Energies, MDPI, vol. 17(21), pages 1-12, October.
    20. Ye, Yang & Zhu, Hongxing & Cheng, Honghui & Miao, Hong & Ding, Jing & Wang, Weilong, 2023. "Performance optimization of metal hydride hydrogen storage reactors based on PCM thermal management," Applied Energy, Elsevier, vol. 338(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5838-:d:1526514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.