IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v189y2024ipas1364032123007657.html
   My bibliography  Save this article

Perspective of staged hydrogen economy in Japan: A case study based on the data-driven method

Author

Listed:
  • Wen, Du
  • Aziz, Muhammad

Abstract

Green hydrogen is an important energy source for replacing fossil fuels for a cleaner transition. While small-scale applications of green hydrogen have proven successful, large-scale nationwide adoption is essential. However, such a change cannot be accomplished overnight. Therefore, this study proposes a staged hydrogen economy scenario for Japan based on the existing energy sources. In this scenario, thermal power generation will be gradually phased out, and the energy shortfall will be compensated by increasing the penetration of renewables and energy storage. Hydrogen and ammonia serve as short- and long-term energy storage solutions, respectively. A data-driven model combining heuristics and optimization methods was designed to address optimal planning and sizing problems. The results show that it is feasible to achieve a 20 % reduction in thermal power by replacing it with renewable energy and hydrogen or ammonia. The lowest levelized cost of electricity (LCOE) in Tokyo (Kanto district) is 0.072 USD·kWh−1, which is comparable to the baseline scenario (using fossil fuels). Hydrogen and ammonia are effective in reducing the LCOE and addressing the mismatch between supply and demand. A higher reduction in thermal power requires further technological and policy support. According to the sensitivity analysis, hydrogen prices and carbon taxes have a high potential to advance the hydrogen economy scenario in the future.

Suggested Citation

  • Wen, Du & Aziz, Muhammad, 2024. "Perspective of staged hydrogen economy in Japan: A case study based on the data-driven method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
  • Handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123007657
    DOI: 10.1016/j.rser.2023.113907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123007657
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mukelabai, Mulako Dean & Wijayantha, Upul K.G. & Blanchard, Richard E., 2022. "Renewable hydrogen economy outlook in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Li, Jiaxuan & Zhu, Xun & Djilali, Ned & Yang, Yang & Ye, Dingding & Chen, Rong & Liao, Qiang, 2022. "Comparative well-to-pump assessment of fueling pathways for zero-carbon transportation in China: Hydrogen economy or methanol economy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    4. Razi, Faran & Dincer, Ibrahim, 2022. "Renewable energy development and hydrogen economy in MENA region: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Kebede, Abraham Alem & Kalogiannis, Theodoros & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Alanne, Kari & Cao, Sunliang, 2017. "Zero-energy hydrogen economy (ZEH2E) for buildings and communities including personal mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 697-711.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun & Wang, Tianwei, 2024. "Comparison of different hydrogen-ammonia energy conversion pathways for renewable energy supply," Renewable Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halder, Pobitra & Babaie, Meisam & Salek, Farhad & Shah, Kalpit & Stevanovic, Svetlana & Bodisco, Timothy A. & Zare, Ali, 2024. "Performance, emissions and economic analyses of hydrogen fuel cell vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Mehmet C. Yagci & Thomas Feldmann & Elmar Bollin & Michael Schmidt & Wolfgang G. Bessler, 2022. "Aging Characteristics of Stationary Lithium-Ion Battery Systems with Serial and Parallel Cell Configurations," Energies, MDPI, vol. 15(11), pages 1-19, May.
    3. Hamed, Mohammad M. & Mohammed, Ali & Olabi, Abdul Ghani, 2023. "Renewable energy adoption decisions in Jordan's industrial sector: Statistical analysis with unobserved heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. César Benavente-Peces & Nisrine Ibadah, 2020. "Buildings Energy Efficiency Analysis and Classification Using Various Machine Learning Technique Classifiers," Energies, MDPI, vol. 13(13), pages 1-24, July.
    5. Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.
    6. Younghoon Seo & Donghyun Lim & Woongbee Son & Yeongmin Kwon & Junghwa Kim & Hyungjoo Kim, 2020. "Deriving Mobility Service Policy Issues Based on Text Mining: A Case Study of Gyeonggi Province in South Korea," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    7. Pin-Han Chen & Cheng-Han Lee & Jun-Yi Wu & Wei-Sheng Chen, 2023. "Perspectives on Taiwan’s Pathway to Net-Zero Emissions," Sustainability, MDPI, vol. 15(6), pages 1-11, March.
    8. Tatiana Potapenko & Jessica S. Döhler & Francisco Francisco & George Lavidas & Irina Temiz, 2023. "Renewable Energy Potential for Micro-Grid at Hvide Sande," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    9. Reveles-Miranda, María & Ramirez-Rivera, Victor & Pacheco-Catalán, Daniella, 2024. "Hybrid energy storage: Features, applications, and ancillary benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Shayan, Mostafa Esmaeili & Najafi, Gholamhassan & Ghobadian, Barat & Gorjian, Shiva & Mamat, Rizalman & Ghazali, Mohd Fairusham, 2022. "Multi-microgrid optimization and energy management under boost voltage converter with Markov prediction chain and dynamic decision algorithm," Renewable Energy, Elsevier, vol. 201(P2), pages 179-189.
    11. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).
    12. Toledo, Mario & Arriagada, Andrés & Ripoll, Nicolás & Salgansky, Eugene A. & Mujeebu, Muhammad Abdul, 2023. "Hydrogen and syngas production by hybrid filtration combustion: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    13. Wang, Chen & Guo, Su & Pei, Huanjin & He, Yi & Liu, Deyou & Li, Mengying, 2023. "Rolling optimization based on holism for the operation strategy of solar tower power plant," Applied Energy, Elsevier, vol. 331(C).
    14. Stucchi, Leonardo & Bocchiola, Daniele & Simoni, Camilla & Ambrosini, Stefano Romano & Bianchi, Alberto & Rosso, Renzo, 2023. "Future hydropower production under the framework of NextGenerationEU: The case of Santa Giustina reservoir in Italian Alps," Renewable Energy, Elsevier, vol. 215(C).
    15. Li, Hongze & Sun, Dongyang & Li, Bingkang & Wang, Xuejie & Zhao, Yihang & Wei, Mengru & Dang, Xiaolu, 2023. "Collaborative optimization of VRB-PS hybrid energy storage system for large-scale wind power grid integration," Energy, Elsevier, vol. 265(C).
    16. Qiujie Sun & Jingyu Zhou & Zhou Lan & Xiangyang Ma, 2023. "The Economic Influence of Energy Storage Construction in the Context of New Power Systems," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    17. Maria Nunez Munoz & Erica E. F. Ballantyne & David A. Stone, 2023. "Assessing the Economic Impact of Introducing Localised PV Solar Energy Generation and Energy Storage for Fleet Electrification," Energies, MDPI, vol. 16(8), pages 1-27, April.
    18. Tee, Wei Hown & Gan, Chin Kim & Sardi, Junainah, 2024. "Benefits of energy storage systems and its potential applications in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    19. Maria Symeonidou & Agis M. Papadopoulos, 2022. "Selection and Dimensioning of Energy Storage Systems for Standalone Communities: A Review," Energies, MDPI, vol. 15(22), pages 1-28, November.
    20. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123007657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.