IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5706-d1521242.html
   My bibliography  Save this article

Seawater Desalination System Driven by Sustainable Energy: A Comprehensive Review

Author

Listed:
  • Guoyu Zhang

    (School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China)

  • Xiaodong Wang

    (School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China)

Abstract

Seawater desalination is one of the most widely used technologies for freshwater production; however, its high energy consumption remains a pressing global challenge. Both the development and utilization of sustainable energy sources are anticipated to mitigate the energy shortages associated with seawater desalination while also effectively addressing the environmental issues linked to fossil fuel usage. This study provides a comprehensive overview of the classification and evolution of traditional desalination technologies, emphasizing the advancements, progress, and challenges associated with integrating various sustainable energy sources into the desalination process. Then, the cost, efficiency, and energy consumption of desalination systems driven by sustainable energy are discussed, and it is found that even the most widely used reverse osmosis (RO) technology driven by fossil fuels has CO 2 emissions of 0.3–1.7 kgCO 2 /m 3 and the lowest cost of desalinated water as high as 0.01 USD/m 3 , suggesting the necessity and urgency of applying sustainable energy. A comparison of different seawater desalination systems driven by different sustainable energy sources is also carried out. The results reveal that although the seawater desalination system driven by sustainable energy has a lower efficiency and a higher cost than the traditional system, it has more potential from the perspective of environmental protection and sustainable development. Furthermore, the efficiency and cost of desalination technology driven by a single sustainable energy source is lower than that driven by multi-sustainable energy sources, while the efficiency of desalination systems driven by multi-sustainable energy is lower than that driven by hybrid energy, and its cost is higher than that of desalination systems driven by hybrid energy. Considering factors such as cost, efficiency, consumption, economic scale, and environmental impact, the integration of various seawater desalination technologies and various energy sources is still the most effective strategy to solve water shortage, the energy crisis, and environmental pollution at present and in the future.

Suggested Citation

  • Guoyu Zhang & Xiaodong Wang, 2024. "Seawater Desalination System Driven by Sustainable Energy: A Comprehensive Review," Energies, MDPI, vol. 17(22), pages 1-46, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5706-:d:1521242
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5706/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5706/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng, Haodong & Yao, Ailing & Han, Qingyang & Zhang, Hailun & Jia, Lei & Sun, Wenxu, 2024. "Effect of droplets in the primary flow on ejector performance of MED-TVC systems," Energy, Elsevier, vol. 293(C).
    2. Tariq, Rasikh & Sheikh, Nadeem Ahmed & Xamán, J. & Bassam, A., 2018. "An innovative air saturator for humidification-dehumidification desalination application," Applied Energy, Elsevier, vol. 228(C), pages 789-807.
    3. Bourouni, K. & Martin, R. & Tadrist, L. & Chaibi, M. T., 1999. "Heat transfer and evaporation in geothermal desalination units," Applied Energy, Elsevier, vol. 64(1-4), pages 129-147, September.
    4. Gonzalez, Alonso & Grágeda, Mario & Ushak, Svetlana, 2017. "Assessment of pilot-scale water purification module with electrodialysis technology and solar energy," Applied Energy, Elsevier, vol. 206(C), pages 1643-1652.
    5. Suárez, Francisco & Ruskowitz, Jeffrey A. & Tyler, Scott W. & Childress, Amy E., 2015. "Renewable water: Direct contact membrane distillation coupled with solar ponds," Applied Energy, Elsevier, vol. 158(C), pages 532-539.
    6. Shaaban, S., 2024. "Performance optimization of an integrated solar combined cycle for the cogeneration of electricity and fresh water," Renewable Energy, Elsevier, vol. 227(C).
    7. Liu, Zhenghao & Zhang, Heng & Cheng, Chao & Huang, Jiguang, 2021. "Energetic performance analysis on a membrane distillation integrated with low concentrating PV/T hybrid system," Renewable Energy, Elsevier, vol. 179(C), pages 1815-1825.
    8. M. A. Hannan & Ali Q. Al-Shetwi & M. S. Mollik & Pin Jern Ker & M. Mannan & M. Mansor & Hussein M. K. Al-Masri & T. M. Indra Mahlia, 2023. "Wind Energy Conversions, Controls, and Applications: A Review for Sustainable Technologies and Directions," Sustainability, MDPI, vol. 15(5), pages 1-30, February.
    9. Tumala, Mohammed M. & Salisu, Afees & Nmadu, Yaaba B., 2023. "Climate change and fossil fuel prices: A GARCH-MIDAS analysis," Energy Economics, Elsevier, vol. 124(C).
    10. Sproul, Alistair B., 2007. "Derivation of the solar geometric relationships using vector analysis," Renewable Energy, Elsevier, vol. 32(7), pages 1187-1205.
    11. Kalogirou, Soteris, 1998. "Use of parabolic trough solar energy collectors for sea-water desalination," Applied Energy, Elsevier, vol. 60(2), pages 65-88, June.
    12. Turgut Yokuş, 2024. "Early Warning Systems for World Energy Crises," Sustainability, MDPI, vol. 16(6), pages 1-18, March.
    13. Morciano, Matteo & Fasano, Matteo & Bergamasco, Luca & Albiero, Alessandro & Lo Curzio, Mario & Asinari, Pietro & Chiavazzo, Eliodoro, 2020. "Sustainable freshwater production using passive membrane distillation and waste heat recovery from portable generator sets," Applied Energy, Elsevier, vol. 258(C).
    14. El-Said, Emad M.S. & Dahab, Mohamed A. & Omara, Mohamed A. & Abdelaziz, Gamal B., 2022. "Humidification-dehumidification solar desalination system using porous activated carbon tubes as a humidifier," Renewable Energy, Elsevier, vol. 187(C), pages 657-670.
    15. Khalaf-Allah, Reda A. & Abdelaziz, Gamal B. & Kandel, Mohamed G. & Easa, Ammar S., 2022. "Development of a centrifugal sprayer-based solar HDH desalination unit with a variety of sprinkler rotational speeds and droplet slot distributions," Renewable Energy, Elsevier, vol. 190(C), pages 1041-1054.
    16. Kavvadias, K.C. & Khamis, I., 2014. "Sensitivity analysis and probabilistic assessment of seawater desalination costs fueled by nuclear and fossil fuel," Energy Policy, Elsevier, vol. 74(S1), pages 24-30.
    17. Kabeel, A.E. & Abdelgaied, Mohamed & El-Said, Emad M.S., 2017. "Study of a solar-driven membrane distillation system: Evaporative cooling effect on performance enhancement," Renewable Energy, Elsevier, vol. 106(C), pages 192-200.
    18. Delucchi, Mark A. & Jacobson, Mark Z., 2011. "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies," Energy Policy, Elsevier, vol. 39(3), pages 1170-1190, March.
    19. Chen, Fengyun & Liu, Lei & Zeng, Hao & Peng, Jingping & Ge, Yunzheng & Liu, Weimin, 2024. "Theoretical and experimental study on the secondary heat recovery cycle of the mixed working fluid in ocean thermal energy conversion," Renewable Energy, Elsevier, vol. 227(C).
    20. Janina Jędrzejczak-Gas & Joanna Wyrwa & Anetta Barska, 2024. "Sustainable Energy Development and Sustainable Economic Development in EU Countries," Energies, MDPI, vol. 17(7), pages 1-20, April.
    21. Gao, Zhiyuan & Zhao, Ying & Li, Lianqing & Hao, Yu, 2024. "Economic effects of sustainable energy technology progress under carbon reduction targets: An analysis based on a dynamic multi-regional CGE model," Applied Energy, Elsevier, vol. 363(C).
    22. Uday Kumar, N.T. & Mohan, Gowtham & Martin, Andrew, 2016. "Performance analysis of solar cogeneration system with different integration strategies for potable water and domestic hot water production," Applied Energy, Elsevier, vol. 170(C), pages 466-475.
    23. Shi, Dan & Wang, Lei & Wang, Zhenxia, 2019. "What affects individual energy conservation behavior: Personal habits, external conditions or values? An empirical study based on a survey of college students," Energy Policy, Elsevier, vol. 128(C), pages 150-161.
    24. Shi, Xueli & Liang, Bingchen & Li, Shaowu & Zhao, Jianchun & Wang, Junhui & Wang, Zhenlu, 2024. "Wave energy resource classification system for the China East Adjacent Seas based on multivariate clustering," Energy, Elsevier, vol. 299(C).
    25. Xiao, Chenglong & Hu, Zheng & Chen, Yongping & Zhang, Chengbin, 2024. "Thermodynamic, economic, exergoeconomic analysis of an integrated ocean thermal energy conversion system," Renewable Energy, Elsevier, vol. 225(C).
    26. Andrés-Mañas, J.A. & Roca, L. & Ruiz-Aguirre, A. & Acién, F.G. & Gil, J.D. & Zaragoza, G., 2020. "Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation," Applied Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tashtoush, Bourhan & Alyahya, Wa'ed & Al Ghadi, Malak & Al-Omari, Jamal & Morosuk, Tatiana, 2023. "Renewable energy integration in water desalination: State-of-the-art review and comparative analysis," Applied Energy, Elsevier, vol. 352(C).
    2. Wang, Qiushi & Liang, Shen & Zhu, Ziye & Wu, Gang & Su, Yuehong & Zheng, Hongfei, 2019. "Performance of seawater-filling type planting system based on solar distillation process: Numerical and experimental investigation," Applied Energy, Elsevier, vol. 250(C), pages 1225-1234.
    3. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Al-Nimr, Moh'd.A. & Dawahdeh, Ahmad I., 2023. "A novel hybrid reverse osmosis and flash desalination system powered by solar photovoltaic/thermal collectors," Renewable Energy, Elsevier, vol. 218(C).
    5. Abdelgaied, Mohamed & Kabeel, A.E. & Sathyamurthy, Ravishankar, 2020. "Improving the performance of solar powered membrane distillation systems using the thermal energy storage mediums and the evaporative cooler," Renewable Energy, Elsevier, vol. 157(C), pages 1046-1052.
    6. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang, 2010. "Renewable and sustainable approaches for desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2641-2654, December.
    7. Kubik, M.L. & Coker, P.J. & Hunt, C., 2012. "The role of conventional generation in managing variability," Energy Policy, Elsevier, vol. 50(C), pages 253-261.
    8. Juan Pablo Santana & Carlos I. Rivera-Solorio & Jia Wei Chew & Yong Zen Tan & Miguel Gijón-Rivera & Iván Acosta-Pazmiño, 2023. "Performance Assessment of Coupled Concentrated Photovoltaic-Thermal and Vacuum Membrane Distillation (CPVT-VMD) System for Water Desalination," Energies, MDPI, vol. 16(3), pages 1-21, February.
    9. Qasem, Naef A.A. & Lawal, Dahiru U. & Aljundi, Isam H. & Abdallah, Ayman M. & Panchal, Hitesh, 2022. "Novel integration of a parallel-multistage direct contact membrane distillation plant with a double-effect absorption refrigeration system," Applied Energy, Elsevier, vol. 323(C).
    10. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. David Gattie & Michael Hewitt, 2023. "National Security as a Value-Added Proposition for Advanced Nuclear Reactors: A U.S. Focus," Energies, MDPI, vol. 16(17), pages 1-26, August.
    12. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    13. Chen, Qian & Burhan, Muhammad & Akhtar, Faheem Hassan & Ybyraiymkul, Doskhan & Shahzad, Muhammad Wakil & Li, Yong & Ng, Kim Choon, 2021. "A decentralized water/electricity cogeneration system integrating concentrated photovoltaic/thermal collectors and vacuum multi-effect membrane distillation," Energy, Elsevier, vol. 230(C).
    14. Silva Herran, Diego & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Global assessment of onshore wind power resources considering the distance to urban areas," Energy Policy, Elsevier, vol. 91(C), pages 75-86.
    15. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.
    16. Li, Jiaojiao & Zoghi, Mohammad & Zhao, Linfeng, 2022. "Thermo-economic assessment and optimization of a geothermal-driven tri-generation system for power, cooling, and hydrogen production," Energy, Elsevier, vol. 244(PB).
    17. Busiswe Skosana & Mukwanga W. Siti & Nsilulu T. Mbungu & Sonu Kumar & Willy Mulumba, 2023. "An Evaluation of Potential Strategies in Renewable Energy Systems and Their Importance for South Africa—A Review," Energies, MDPI, vol. 16(22), pages 1-27, November.
    18. Ronnie D. Lipschutz & Dustin Mulvaney, 2013. "The road not taken, round II: centralized vs. distributed energy strategies and human security," Chapters, in: Hugh Dyer & Maria Julia Trombetta (ed.), International Handbook of Energy Security, chapter 22, pages 483-506, Edward Elgar Publishing.
    19. Peter Lund, 2012. "The European Union challenge: integration of energy, climate, and economic policy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 1(1), pages 60-68, July.
    20. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5706-:d:1521242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.