IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v32y2007i7p1187-1205.html
   My bibliography  Save this article

Derivation of the solar geometric relationships using vector analysis

Author

Listed:
  • Sproul, Alistair B.

Abstract

The standard mathematical approach used in deriving equations to describe the apparent motion and position of the Sun is spherical trigonometry. Additionally, the derivation of the equations for the intensity of the direct beam radiation, incident on the surface of a solar collector or architectural surface, also generally relies on the same approach. An alternative approach utilizing vector analysis is used to derive all of these equations. The technique greatly simplifies the derivation of equations for quantities such as the declination, altitude and azimuth of the Sun, and the intensity of the direct beam radiation on a tilted panel with an arbitrary orientation. Additionally, it allows a simple derivation of the equations needed to accurately describe the Equation of Time and the right ascension.

Suggested Citation

  • Sproul, Alistair B., 2007. "Derivation of the solar geometric relationships using vector analysis," Renewable Energy, Elsevier, vol. 32(7), pages 1187-1205.
  • Handle: RePEc:eee:renene:v:32:y:2007:i:7:p:1187-1205
    DOI: 10.1016/j.renene.2006.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148106001054
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2006.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mendoza Castellanos, Luis Sebastian & Carrillo Caballero, Gaylord Enrique & Melian Cobas, Vladimir Rafael & Silva Lora, Electo Eduardo & Martinez Reyes, Arnaldo Martin, 2017. "Mathematical modeling of the geometrical sizing and thermal performance of a Dish/Stirling system for power generation," Renewable Energy, Elsevier, vol. 107(C), pages 23-35.
    2. Rapp-Arrarás, Ígor & Domingo-Santos, Juan M., 2009. "Algorithm for the calculation of the horizontal coordinates of the Sun via spatial rotation matrices," Renewable Energy, Elsevier, vol. 34(3), pages 876-882.
    3. Luo, Yongqiang & Zhang, Ling & Wu, Jing & Wang, Xiliang & Liu, Zhongbing & Wu, Zhenghong, 2017. "Modeling of solar transmission through multilayer glazing facade using shading blinds with arbitrary geometrical and surface optical properties," Energy, Elsevier, vol. 128(C), pages 163-182.
    4. Copper, J.K. & Sproul, A.B. & Bruce, A.G., 2016. "A method to calculate array spacing and potential system size of photovoltaic arrays in the urban environment using vector analysis," Applied Energy, Elsevier, vol. 161(C), pages 11-23.
    5. Chandra Mouli, G.R. & Bauer, P. & Zeman, M., 2016. "System design for a solar powered electric vehicle charging station for workplaces," Applied Energy, Elsevier, vol. 168(C), pages 434-443.
    6. Soulayman, S., 2018. "Comments on solar azimuth angle," Renewable Energy, Elsevier, vol. 123(C), pages 294-300.
    7. Zech, Matthias & von Bremen, Lueder, 2024. "End-to-end learning of representative PV capacity factors from aggregated PV feed-ins," Applied Energy, Elsevier, vol. 361(C).
    8. Guoyu Zhang & Xiaodong Wang, 2024. "Seawater Desalination System Driven by Sustainable Energy: A Comprehensive Review," Energies, MDPI, vol. 17(22), pages 1-46, November.
    9. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    10. Shapiro, Finley R., 2022. "The position of the sun based on a simplified model," Renewable Energy, Elsevier, vol. 184(C), pages 176-181.
    11. Zhu, Yongqiang & Liu, Jiahao & Yang, Xiaohua, 2020. "Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection," Applied Energy, Elsevier, vol. 264(C).
    12. Zhang, Taiping & Stackhouse, Paul W. & Macpherson, Bradley & Mikovitz, J. Colleen, 2021. "A solar azimuth formula that renders circumstantial treatment unnecessary without compromising mathematical rigor: Mathematical setup, application and extension of a formula based on the subsolar poin," Renewable Energy, Elsevier, vol. 172(C), pages 1333-1340.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:32:y:2007:i:7:p:1187-1205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.