IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2831-d1411402.html
   My bibliography  Save this article

Short-Term Load Forecasting of Electric Vehicle Charging Stations Accounting for Multifactor IDBO Hybrid Models

Author

Listed:
  • Minan Tang

    (College of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Changyou Wang

    (College of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Jiandong Qiu

    (College of Electrical and Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Hanting Li

    (College of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Xi Guo

    (College of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Wenxin Sheng

    (College of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

Abstract

The charging behavior of electric vehicle users is highly stochastic, which makes the short-term prediction of charging load at electric vehicle charging stations difficult. In this paper, a data-driven hybrid model optimized by the improved dung beetle optimization algorithm (IDBO) is proposed to address the problem of the low accuracy of short-term prediction. Firstly, the charging station data are preprocessed to obtain clear and organized load data, and the input feature matrix is constructed using factors such as temperature, date type, and holidays. Secondly, the optimal CNN-BiLSTM model is constructed using convolutional neural network (CNN) and Bi-directional Long Short-Term Memory (BiLSTM), which realizes the feature extraction of the input matrix and better captures the hidden patterns and regularities in it. Then, methods such as Bernoulli mapping are used to improve the DBO algorithm and its hyperparameters; for example, hidden neurons of the hybrid model are tuned to further improve the model prediction accuracy. Finally, a simulation experiment platform is established based on MATLAB R2023a to validate the example calculations on the historical data of EV charging stations in the public dataset of ANN-DATA, and comparative analyses are carried out. The results show that compared with the traditional models such as CNN, BiLSTM and PSO-CNN-BiLSTM, the coefficient of determination of the model exceeds 0.8921 and the root mean square error is maintained at about 4.413 on both the training and test sets, which proves its effectiveness and stability.

Suggested Citation

  • Minan Tang & Changyou Wang & Jiandong Qiu & Hanting Li & Xi Guo & Wenxin Sheng, 2024. "Short-Term Load Forecasting of Electric Vehicle Charging Stations Accounting for Multifactor IDBO Hybrid Models," Energies, MDPI, vol. 17(12), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2831-:d:1411402
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2831/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2831/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schuller, Alexander & Flath, Christoph M. & Gottwalt, Sebastian, 2015. "Quantifying load flexibility of electric vehicles for renewable energy integration," Applied Energy, Elsevier, vol. 151(C), pages 335-344.
    2. Godina, Radu & Rodrigues, Eduardo M.G. & Matias, João C.O. & Catalão, João P.S., 2016. "Smart electric vehicle charging scheduler for overloading prevention of an industry client power distribution transformer," Applied Energy, Elsevier, vol. 178(C), pages 29-42.
    3. Shang, Yitong & Li, Sen, 2024. "FedPT-V2G: Security enhanced federated transformer learning for real-time V2G dispatch with non-IID data," Applied Energy, Elsevier, vol. 358(C).
    4. Iversen, Emil B. & Morales, Juan M. & Madsen, Henrik, 2014. "Optimal charging of an electric vehicle using a Markov decision process," Applied Energy, Elsevier, vol. 123(C), pages 1-12.
    5. Qian Wang & Xiaolong Yang & Xiaoyu Yu & Jingwen Yun & Jinbo Zhang, 2023. "Electric Vehicle Participation in Regional Grid Demand Response: Potential Analysis Model and Architecture Planning," Sustainability, MDPI, vol. 15(3), pages 1-22, February.
    6. Mu, Yunfei & Wu, Jianzhong & Jenkins, Nick & Jia, Hongjie & Wang, Chengshan, 2014. "A Spatial–Temporal model for grid impact analysis of plug-in electric vehicles," Applied Energy, Elsevier, vol. 114(C), pages 456-465.
    7. Wan, Anping & Chang, Qing & AL-Bukhaiti, Khalil & He, Jiabo, 2023. "Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism," Energy, Elsevier, vol. 282(C).
    8. Zhoufan Chen & Congmin Wang & Longjin Lv & Liangzhong Fan & Shiting Wen & Zhengtao Xiang, 2023. "Research on Peak Load Prediction of Distribution Network Lines Based on Prophet-LSTM Model," Sustainability, MDPI, vol. 15(15), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    2. Julia Vopava & Christian Koczwara & Anna Traupmann & Thomas Kienberger, 2019. "Investigating the Impact of E-Mobility on the Electrical Power Grid Using a Simplified Grid Modelling Approach," Energies, MDPI, vol. 13(1), pages 1-23, December.
    3. Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.
    4. García-Villalobos, J. & Zamora, I. & Knezović, K. & Marinelli, M., 2016. "Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks," Applied Energy, Elsevier, vol. 180(C), pages 155-168.
    5. Rezkalla, Michel & Zecchino, Antonio & Martinenas, Sergejus & Prostejovsky, Alexander M. & Marinelli, Mattia, 2018. "Comparison between synthetic inertia and fast frequency containment control based on single phase EVs in a microgrid," Applied Energy, Elsevier, vol. 210(C), pages 764-775.
    6. Xiang, Yue & Liu, Junyong & Li, Ran & Li, Furong & Gu, Chenghong & Tang, Shuoya, 2016. "Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates," Applied Energy, Elsevier, vol. 178(C), pages 647-659.
    7. Moon, Sang-Keun & Kim, Jin-O, 2017. "Balanced charging strategies for electric vehicles on power systems," Applied Energy, Elsevier, vol. 189(C), pages 44-54.
    8. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    9. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    10. Arias, Mariz B. & Kim, Myungchin & Bae, Sungwoo, 2017. "Prediction of electric vehicle charging-power demand in realistic urban traffic networks," Applied Energy, Elsevier, vol. 195(C), pages 738-753.
    11. Paterakis, Nikolaos G. & Gibescu, Madeleine, 2016. "A methodology to generate power profiles of electric vehicle parking lots under different operational strategies," Applied Energy, Elsevier, vol. 173(C), pages 111-123.
    12. Škugor, Branimir & Deur, Joško, 2016. "A bi-level optimisation framework for electric vehicle fleet charging management," Applied Energy, Elsevier, vol. 184(C), pages 1332-1342.
    13. Salah, Florian & Ilg, Jens P. & Flath, Christoph M. & Basse, Hauke & Dinther, Clemens van, 2015. "Impact of electric vehicles on distribution substations: A Swiss case study," Applied Energy, Elsevier, vol. 137(C), pages 88-96.
    14. Seddig, Katrin & Jochem, Patrick & Fichtner, Wolf, 2019. "Two-stage stochastic optimization for cost-minimal charging of electric vehicles at public charging stations with photovoltaics," Applied Energy, Elsevier, vol. 242(C), pages 769-781.
    15. Staudt, Philipp & Schmidt, Marc & Gärttner, Johannes & Weinhardt, Christof, 2018. "A decentralized approach towards resolving transmission grid congestion in Germany using vehicle-to-grid technology," Applied Energy, Elsevier, vol. 230(C), pages 1435-1446.
    16. Jiang, C.X. & Jing, Z.X. & Cui, X.R. & Ji, T.Y. & Wu, Q.H., 2018. "Multiple agents and reinforcement learning for modelling charging loads of electric taxis," Applied Energy, Elsevier, vol. 222(C), pages 158-168.
    17. Zhang, Tianyang & Pota, Himanshu & Chu, Chi-Cheng & Gadh, Rajit, 2018. "Real-time renewable energy incentive system for electric vehicles using prioritization and cryptocurrency," Applied Energy, Elsevier, vol. 226(C), pages 582-594.
    18. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    19. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    20. Eising, Jan Willem & van Onna, Tom & Alkemade, Floortje, 2014. "Towards smart grids: Identifying the risks that arise from the integration of energy and transport supply chains," Applied Energy, Elsevier, vol. 123(C), pages 448-455.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2831-:d:1411402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.