IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261924000096.html
   My bibliography  Save this article

FedPT-V2G: Security enhanced federated transformer learning for real-time V2G dispatch with non-IID data

Author

Listed:
  • Shang, Yitong
  • Li, Sen

Abstract

The rising popularity of electric vehicles (EVs) underscores the potential of vehicle-to-grid (V2G) technology to contribute to load peak-shaving, valley-filling, and photovoltaic (PV) self-consumption. Effective V2G control strategies can be obtained by data-driven techniques, which is able to leverage historical and current data to inform future decision-making amidst uncertainties. However, the centralized collection and sharing of data among charging stations face challenges due to data asset concerns. Furthermore, even if data sharing hurdles are overcome, the non-independent and non-identically distributed (Non-IID) nature of data across charging stations can still negatively impact performance. In this study, we introduce FedPT-V2G, a security-enhanced federated transformer learning approach for real-time V2G dispatch that addresses Non-IID data. We employ deep learning models trained on historical and current data to enable real-time decision-making, facilitating both load shifting and PV self-consumption. Additionally, we utilize federated learning to jointly train a global model across all charging stations without collecting or sharing any local private data. We pioneer the application of the Proximal algorithm and Transformer model to tackle data distribution discrepancies within the V2G scheduling prediction task. The Proximal algorithm employs regularization techniques to align local models at each charging station more closely with the global model during updates. Concurrently, the multi-head attention mechanism within the Transformer model allows learned feature vectors to diverge, enabling better exploitation of variations across the entire feature space. Finally, we validate the proposed FedPT-V2G approach through extensive numerical simulations, demonstrating comparable performance to centralized learning on both balanced (98.93% vs 98.65%) and imbalanced (92.15% vs 92.20% in label skew) datasets.

Suggested Citation

  • Shang, Yitong & Li, Sen, 2024. "FedPT-V2G: Security enhanced federated transformer learning for real-time V2G dispatch with non-IID data," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261924000096
    DOI: 10.1016/j.apenergy.2024.122626
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924000096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122626?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Lingfeng & Xie, Haipeng & Wang, Xiaoyang & Bie, Zhaohong, 2023. "Privacy-preserving knowledge sharing for few-shot building energy prediction: A federated learning approach," Applied Energy, Elsevier, vol. 337(C).
    2. Liu, Ke & Liu, Yanli, 2023. "Stochastic user equilibrium based spatial-temporal distribution prediction of electric vehicle charging load," Applied Energy, Elsevier, vol. 339(C).
    3. Lin, Wen-Ting & Chen, Guo & Huang, Yuhan, 2022. "Incentive edge-based federated learning for false data injection attack detection on power grid state estimation: A novel mechanism design approach," Applied Energy, Elsevier, vol. 314(C).
    4. Dong, Hanjiang & Zhu, Jizhong & Li, Shenglin & Wu, Wanli & Zhu, Haohao & Fan, Junwei, 2023. "Short-term residential household reactive power forecasting considering active power demand via deep Transformer sequence-to-sequence networks," Applied Energy, Elsevier, vol. 329(C).
    5. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    6. Aslani, Mehrdad & Mashayekhi, Mehdi & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2022. "Robust optimal operation of energy hub incorporating integrated thermal and electrical demand response programs under various electric vehicle charging modes," Applied Energy, Elsevier, vol. 321(C).
    7. Li, Zhengmao & Wu, Lei & Xu, Yan & Wang, Luhao & Yang, Nan, 2023. "Distributed tri-layer risk-averse stochastic game approach for energy trading among multi-energy microgrids," Applied Energy, Elsevier, vol. 331(C).
    8. Li, Yang & Wang, Ruinong & Li, Yuanzheng & Zhang, Meng & Long, Chao, 2023. "Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach," Applied Energy, Elsevier, vol. 329(C).
    9. Wang, Yi & Ma, Jiahao & Gao, Ning & Wen, Qingsong & Sun, Liang & Guo, Hongye, 2023. "Federated fuzzy k-means for privacy-preserving behavior analysis in smart grids," Applied Energy, Elsevier, vol. 331(C).
    10. Li, Zhengmao & Xu, Yan & Wang, Peng & Xiao, Gaoxi, 2023. "Coordinated preparation and recovery of a post-disaster Multi-energy distribution system considering thermal inertia and diverse uncertainties," Applied Energy, Elsevier, vol. 336(C).
    11. Lee, Sangmin & Boomsma, Trine Krogh, 2022. "An approximate dynamic programming algorithm for short-term electric vehicle fleet operation under uncertainty," Applied Energy, Elsevier, vol. 325(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Lisi & Ismail Shah, 2024. "Joint Component Estimation for Electricity Price Forecasting Using Functional Models," Energies, MDPI, vol. 17(14), pages 1-18, July.
    2. Nitin Kumar Singh & Masaaki Nagahara, 2024. "LightGBM-, SHAP-, and Correlation-Matrix-Heatmap-Based Approaches for Analyzing Household Energy Data: Towards Electricity Self-Sufficient Houses," Energies, MDPI, vol. 17(17), pages 1-32, September.
    3. Minan Tang & Changyou Wang & Jiandong Qiu & Hanting Li & Xi Guo & Wenxin Sheng, 2024. "Short-Term Load Forecasting of Electric Vehicle Charging Stations Accounting for Multifactor IDBO Hybrid Models," Energies, MDPI, vol. 17(12), pages 1-19, June.
    4. Sichen Shi & Peiyi Wang & Zixuan Zheng & Shu Zhang, 2024. "Two-Layer Optimization Strategy of Electric Vehicle and Air Conditioning Load Considering the Benefit of Peak-to-Valley Smoothing," Sustainability, MDPI, vol. 16(8), pages 1-16, April.
    5. Hristo Ivanov Beloev & Stanislav Radikovich Saitov & Antonina Andreevna Filimonova & Natalia Dmitrievna Chichirova & Oleg Evgenievich Babikov & Iliya Krastev Iliev, 2024. "Prediction of Pipe Failure Rate in Heating Networks Using Machine Learning Methods," Energies, MDPI, vol. 17(14), pages 1-16, July.
    6. Yongjie Yang & Yulong Li & Yan Cai & Hui Tang & Peng Xu, 2024. "Data-Driven Golden Jackal Optimization–Long Short-Term Memory Short-Term Energy-Consumption Prediction and Optimization System," Energies, MDPI, vol. 17(15), pages 1-20, July.
    7. Afshin Tatar & Amin Shokrollahi & Abbas Zeinijahromi & Manouchehr Haghighi, 2024. "Deep Learning for Predicting Hydrogen Solubility in n-Alkanes: Enhancing Sustainable Energy Systems," Sustainability, MDPI, vol. 16(17), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Bingyang & Zeng, Xingjie & Zhang, Weishan & Fan, Lulu & Cao, Shaohua & Zhou, Jiehan, 2023. "Knowledge sharing-based multi-block federated learning for few-shot oil layer identification," Energy, Elsevier, vol. 283(C).
    2. Tan, Bifei & Chen, Simin & Liang, Zipeng & Zheng, Xiaodong & Zhu, Yanjin & Chen, Haoyong, 2024. "An iteration-free hierarchical method for the energy management of multiple-microgrid systems with renewable energy sources and electric vehicles," Applied Energy, Elsevier, vol. 356(C).
    3. Molin An & Xueshan Han & Tianguang Lu, 2024. "A Stochastic Model Predictive Control Method for Tie-Line Power Smoothing under Uncertainty," Energies, MDPI, vol. 17(14), pages 1-17, July.
    4. Tang, Yugui & Zhang, Shujing & Zhang, Zhen, 2024. "A privacy-preserving framework integrating federated learning and transfer learning for wind power forecasting," Energy, Elsevier, vol. 286(C).
    5. Long Wang, 2023. "Optimal Scheduling Strategy for Multi-Energy Microgrid Considering Integrated Demand Response," Energies, MDPI, vol. 16(12), pages 1-17, June.
    6. Zhao, Bingxu & Cao, Xiaodong & Duan, Pengfei, 2024. "Cooperative operation of multiple low-carbon microgrids: An optimization study addressing gaming fraud and multiple uncertainties," Energy, Elsevier, vol. 297(C).
    7. Mubbashir Ali & Jussi Ekström & Matti Lehtonen, 2018. "Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems," Energies, MDPI, vol. 11(5), pages 1-11, May.
    8. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    9. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    10. Alqahtani, Mohammed & Hu, Mengqi, 2022. "Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning," Energy, Elsevier, vol. 244(PA).
    11. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    12. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    13. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    14. Wojciech Rabiega & Artur Gorzałczyński & Robert Jeszke & Paweł Mzyk & Krystian Szczepański, 2021. "How Long Will Combustion Vehicles Be Used? Polish Transport Sector on the Pathway to Climate Neutrality," Energies, MDPI, vol. 14(23), pages 1-19, November.
    15. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    16. Younghun Choi & Takuro Kobashi & Yoshiki Yamagata & Akito Murayama, 2021. "Assessment of waterfront office redevelopment plan on optimal building energy demand and rooftop photovoltaics for urban decarbonization," Papers 2108.09029, arXiv.org.
    17. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    18. Martínez-Lao, Juan & Montoya, Francisco G. & Montoya, Maria G. & Manzano-Agugliaro, Francisco, 2017. "Electric vehicles in Spain: An overview of charging systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 970-983.
    19. Tan, Bifei & Lin, Zhenjia & Zheng, Xiaodong & Xiao, Fu & Wu, Qiuwei & Yan, Jinyue, 2023. "Distributionally robust energy management for multi-microgrids with grid-interactive EVs considering the multi-period coupling effect of user behaviors," Applied Energy, Elsevier, vol. 350(C).
    20. Fang, Lei & He, Bin, 2023. "A deep learning framework using multi-feature fusion recurrent neural networks for energy consumption forecasting," Applied Energy, Elsevier, vol. 348(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261924000096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.