IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v222y2018icp158-168.html
   My bibliography  Save this article

Multiple agents and reinforcement learning for modelling charging loads of electric taxis

Author

Listed:
  • Jiang, C.X.
  • Jing, Z.X.
  • Cui, X.R.
  • Ji, T.Y.
  • Wu, Q.H.

Abstract

The charging load modelling of electric vehicles (EVs) is of great importance for safe and stable operation of power systems. However, it is difficult to use the traditional Monte Carlo method and mathematical optimization methods to establish a detailed and precise charging load model for EVs in both the temporal and spatial scales, especially for plug-in electric taxis (PETs) due to its strong random characteristics and complex operation behaviors. In order to solve this problem, multiple agents and the multi-step Q(λ) learning are utilized to model the charging loads of PETs in both the temporal and spatial scales. Firstly, a multi-agent framework is developed based on java agent development framework (JADE), and a variety of agents are built to simulate the operation related players, as well as the operational environment. Then, the multi-step Q(λ) learning is developed for PET Agents to make decisions under various situations and its performances are compared with the Q-learning. Simulation results illustrate that the proposed framework is able to dynamically simulate the PET daily operation and to obtain the charging loads of PETs in both the temporal and spatial scales. The multi-step Q(λ) learning outperforms Q-learning in terms of convergence rate and reward performance. Moreover, the PET shift strategies and electricity pricing mechanisms are investigated, and the results indicate that the appropriate operation rules of PETs significantly improve the safe and reliable operation of power systems.

Suggested Citation

  • Jiang, C.X. & Jing, Z.X. & Cui, X.R. & Ji, T.Y. & Wu, Q.H., 2018. "Multiple agents and reinforcement learning for modelling charging loads of electric taxis," Applied Energy, Elsevier, vol. 222(C), pages 158-168.
  • Handle: RePEc:eee:appene:v:222:y:2018:i:c:p:158-168
    DOI: 10.1016/j.apenergy.2018.03.164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918305129
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelson Minar & Rogert Burkhart & Chris Langton & Manor Askenazi, 1996. "The Swarm Simulation System: A Toolkit for Building Multi-Agent Simulations," Working Papers 96-06-042, Santa Fe Institute.
    2. Hu, Zechun & Zhan, Kaiqiao & Zhang, Hongcai & Song, Yonghua, 2016. "Pricing mechanisms design for guiding electric vehicle charging to fill load valley," Applied Energy, Elsevier, vol. 178(C), pages 155-163.
    3. Iversen, Emil B. & Morales, Juan M. & Madsen, Henrik, 2014. "Optimal charging of an electric vehicle using a Markov decision process," Applied Energy, Elsevier, vol. 123(C), pages 1-12.
    4. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    5. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M., 2016. "A multi-agent based scheduling algorithm for adaptive electric vehicles charging," Applied Energy, Elsevier, vol. 177(C), pages 354-365.
    6. Neaimeh, Myriam & Wardle, Robin & Jenkins, Andrew M. & Yi, Jialiang & Hill, Graeme & Lyons, Padraig F. & Hübner, Yvonne & Blythe, Phil T. & Taylor, Phil C., 2015. "A probabilistic approach to combining smart meter and electric vehicle charging data to investigate distribution network impacts," Applied Energy, Elsevier, vol. 157(C), pages 688-698.
    7. Yuqing Yang & Weige Zhang & Liyong Niu & Jiuchun Jiang, 2015. "Coordinated Charging Strategy for Electric Taxis in Temporal and Spatial Scale," Energies, MDPI, vol. 8(2), pages 1-17, February.
    8. Kudoh, Yuki & Ishitani, Hisashi & Matsuhashi, Ryuji & Yoshida, Yoshikuni & Morita, Kouji & Katsuki, Shinichi & Kobayashi, Osamu, 2001. "Environmental evaluation of introducing electric vehicles using a dynamic traffic-flow model," Applied Energy, Elsevier, vol. 69(2), pages 145-159, June.
    9. Mu, Yunfei & Wu, Jianzhong & Jenkins, Nick & Jia, Hongjie & Wang, Chengshan, 2014. "A Spatial–Temporal model for grid impact analysis of plug-in electric vehicles," Applied Energy, Elsevier, vol. 114(C), pages 456-465.
    10. Du, Jiuyu & Ouyang, Minggao & Chen, Jingfu, 2017. "Prospects for Chinese electric vehicle technologies in 2016–2020: Ambition and rationality," Energy, Elsevier, vol. 120(C), pages 584-596.
    11. Salah, Florian & Ilg, Jens P. & Flath, Christoph M. & Basse, Hauke & Dinther, Clemens van, 2015. "Impact of electric vehicles on distribution substations: A Swiss case study," Applied Energy, Elsevier, vol. 137(C), pages 88-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Rendong & Zhong, Shengyuan & Wen, Xin & An, Qingsong & Zheng, Ruifan & Li, Yang & Zhao, Jun, 2022. "Multi-agent deep reinforcement learning optimization framework for building energy system with renewable energy," Applied Energy, Elsevier, vol. 312(C).
    2. Yin, Linfei & Zhang, Bin, 2021. "Time series generative adversarial network controller for long-term smart generation control of microgrids," Applied Energy, Elsevier, vol. 281(C).
    3. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    4. Gao, Yuan & Matsunami, Yuki & Miyata, Shohei & Akashi, Yasunori, 2022. "Multi-agent reinforcement learning dealing with hybrid action spaces: A case study for off-grid oriented renewable building energy system," Applied Energy, Elsevier, vol. 326(C).
    5. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    6. Wang, Yi & Qiu, Dawei & He, Yinglong & Zhou, Quan & Strbac, Goran, 2023. "Multi-agent reinforcement learning for electric vehicle decarbonized routing and scheduling," Energy, Elsevier, vol. 284(C).
    7. Rajani, B. & Kommula, Bapayya Naidu, 2022. "An optimal energy management among the electric vehicle charging stations and electricity distribution system using GPC-RERNN approach," Energy, Elsevier, vol. 245(C).
    8. Tu, Wei & Santi, Paolo & Zhao, Tianhong & He, Xiaoyi & Li, Qingquan & Dong, Lei & Wallington, Timothy J. & Ratti, Carlo, 2019. "Acceptability, energy consumption, and costs of electric vehicle for ride-hailing drivers in Beijing," Applied Energy, Elsevier, vol. 250(C), pages 147-160.
    9. Qiu, Dawei & Wang, Yi & Hua, Weiqi & Strbac, Goran, 2023. "Reinforcement learning for electric vehicle applications in power systems:A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Alrobaian, Abdulrahman A. & Alsagri, Ali Sulaiman, 2023. "Multi-agent-based energy management for a fully electrified residential consumption," Energy, Elsevier, vol. 282(C).
    11. Ramya Kuppusamy & Srete Nikolovski & Yuvaraja Teekaraman, 2023. "Review of Machine Learning Techniques for Power Quality Performance Evaluation in Grid-Connected Systems," Sustainability, MDPI, vol. 15(20), pages 1-29, October.
    12. Wang, Zixuan & Xiao, Fu & Ran, Yi & Li, Yanxue & Xu, Yang, 2024. "Scalable energy management approach of residential hybrid energy system using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 367(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arias, Mariz B. & Kim, Myungchin & Bae, Sungwoo, 2017. "Prediction of electric vehicle charging-power demand in realistic urban traffic networks," Applied Energy, Elsevier, vol. 195(C), pages 738-753.
    2. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    3. Julia Vopava & Christian Koczwara & Anna Traupmann & Thomas Kienberger, 2019. "Investigating the Impact of E-Mobility on the Electrical Power Grid Using a Simplified Grid Modelling Approach," Energies, MDPI, vol. 13(1), pages 1-23, December.
    4. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    5. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    6. Moon, Sang-Keun & Kim, Jin-O, 2017. "Balanced charging strategies for electric vehicles on power systems," Applied Energy, Elsevier, vol. 189(C), pages 44-54.
    7. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    9. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M. & Jenkins, Nick & Carroll, Steve & Barker, Myles, 2016. "A data-driven approach for characterising the charging demand of electric vehicles: A UK case study," Applied Energy, Elsevier, vol. 162(C), pages 763-771.
    10. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    11. Ye Tao & Yupu Chen & Miaohua Huang & Lan Yang, 2023. "Data-Based Orderly Charging Strategy Considering Users’ Charging Choices," Energies, MDPI, vol. 16(19), pages 1-16, October.
    12. Seyed Mahdi Miraftabzadeh & Michela Longo & Federica Foiadelli, 2021. "Estimation Model of Total Energy Consumptions of Electrical Vehicles under Different Driving Conditions," Energies, MDPI, vol. 14(4), pages 1-15, February.
    13. Qiang Xing & Zhong Chen & Ziqi Zhang & Xiao Xu & Tian Zhang & Xueliang Huang & Haiwei Wang, 2020. "Urban Electric Vehicle Fast-Charging Demand Forecasting Model Based on Data-Driven Approach and Human Decision-Making Behavior," Energies, MDPI, vol. 13(6), pages 1-32, March.
    14. Jorge García Álvarez & Miguel Ángel González & Camino Rodríguez Vela & Ramiro Varela, 2018. "Electric Vehicle Charging Scheduling by an Enhanced Artificial Bee Colony Algorithm," Energies, MDPI, vol. 11(10), pages 1-19, October.
    15. Staudt, Philipp & Schmidt, Marc & Gärttner, Johannes & Weinhardt, Christof, 2018. "A decentralized approach towards resolving transmission grid congestion in Germany using vehicle-to-grid technology," Applied Energy, Elsevier, vol. 230(C), pages 1435-1446.
    16. Steffen Limmer, 2019. "Dynamic Pricing for Electric Vehicle Charging—A Literature Review," Energies, MDPI, vol. 12(18), pages 1-24, September.
    17. Yvenn Amara-Ouali & Yannig Goude & Pascal Massart & Jean-Michel Poggi & Hui Yan, 2021. "A Review of Electric Vehicle Load Open Data and Models," Energies, MDPI, vol. 14(8), pages 1-35, April.
    18. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    19. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    20. Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:222:y:2018:i:c:p:158-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.