IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2767-d1409215.html
   My bibliography  Save this article

Auxiliary Heat System Design and Off-Design Performance Optimization of OTEC Radial Inflow Turbine

Author

Listed:
  • Yiming Wang

    (School of Mechanical Engineering, Shandong University, Jinan 250061, China
    Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Shandong University, Jinan 250061, China
    National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China)

  • Yanjun Liu

    (School of Mechanical Engineering, Shandong University, Jinan 250061, China
    Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Shandong University, Jinan 250061, China
    National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China)

  • Qiang Zhang

    (School of Mechanical Engineering, Shandong University, Jinan 250061, China
    Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Shandong University, Jinan 250061, China
    National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China)

Abstract

In this paper, solar energy is used as the auxiliary heat source of the ocean thermal energy radial inflow turbine, and the thermodynamic model of the circulation system is established. In addition, the ejector is introduced into the ocean thermal power generation system, and the process simulation is carried out using Aspen Plus V12. To address performance attenuation of the radial turbine under varying working conditions, shape optimization of a 30 kW OTEC radial turbine was conducted. Finally, the off-design performance variation in the radial inflow turbine is analyzed in the presence of a solar auxiliary heat source. The results show that the use of an auxiliary heat source can effectively improve the cycle efficiency of the system and is also conducive to the stable operation of the radial turbine. Under the condition of auxiliary heat source, the system cycle efficiency is increased by 2.269%.

Suggested Citation

  • Yiming Wang & Yanjun Liu & Qiang Zhang, 2024. "Auxiliary Heat System Design and Off-Design Performance Optimization of OTEC Radial Inflow Turbine," Energies, MDPI, vol. 17(11), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2767-:d:1409215
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2767/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sauret, Emilie & Gu, Yuantong, 2014. "Three-dimensional off-design numerical analysis of an organic Rankine cycle radial-inflow turbine," Applied Energy, Elsevier, vol. 135(C), pages 202-211.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adams, Benjamin M. & Kuehn, Thomas H. & Bielicki, Jeffrey M. & Randolph, Jimmy B. & Saar, Martin O., 2015. "A comparison of electric power output of CO2 Plume Geothermal (CPG) and brine geothermal systems for varying reservoir conditions," Applied Energy, Elsevier, vol. 140(C), pages 365-377.
    2. He, Yang & MengWang, & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2021. "Thermodynamic research on compressed air energy storage system with turbines under sliding pressure operation," Energy, Elsevier, vol. 222(C).
    3. Jun-Seong Kim & You-Taek Kim & Do-Yeop Kim, 2022. "Preliminary Design and Blade Optimization of a Two-Stage Radial Outflow Turbine for a CO 2 Power Cycle," Energies, MDPI, vol. 15(17), pages 1-22, August.
    4. Zhou, Jian & Zhang, Wei, 2023. "Coal consumption prediction in thermal power units: A feature construction and selection method," Energy, Elsevier, vol. 273(C).
    5. Zhang, Chengbin & Wu, Zhe & Wang, Jiadian & Ding, Ce & Gao, Tieyu & Chen, Yongping, 2023. "Thermodynamic performance of a radial-inflow turbine for ocean thermal energy conversion using ammonia," Renewable Energy, Elsevier, vol. 202(C), pages 907-920.
    6. Li, Jing & Li, Pengcheng & Gao, Guangtao & Pei, Gang & Su, Yuehong & Ji, Jie, 2017. "Thermodynamic and economic investigation of a screw expander-based direct steam generation solar cascade Rankine cycle system using water as thermal storage fluid," Applied Energy, Elsevier, vol. 195(C), pages 137-151.
    7. Otero R, Gustavo J. & Smit, Stephan H.H.J. & Pecnik, Rene, 2021. "Three-dimensional unsteady stator-rotor interactions in high-expansion organic Rankine cycle turbines," Energy, Elsevier, vol. 217(C).
    8. Wang, Zhiqi & Xie, Baoqi & Xia, Xiaoxia & Luo, Lan & Yang, Huya & Li, Xin, 2023. "Entropy production analysis of a radial inflow turbine with variable inlet guide vane for ORC application," Energy, Elsevier, vol. 265(C).
    9. Yao, Yubo & Fang, Song & Zhu, Shaolong & Xu, Zhuoren & Zhang, Hanwei & Gan, Haoran & Iqbal, Qasir & Qiu, Limin & Wang, Kai, 2024. "Optimal design and tip leakage flow characteristics analysis of radial inflow turbine used in organic Rankine and vapor compression refrigeration system," Energy, Elsevier, vol. 301(C).
    10. Da Lio, Luca & Manente, Giovanni & Lazzaretto, Andrea, 2017. "A mean-line model to predict the design efficiency of radial inflow turbines in organic Rankine cycle (ORC) systems," Applied Energy, Elsevier, vol. 205(C), pages 187-209.
    11. Włodarski, Wojciech, 2019. "A model development and experimental verification for a vapour microturbine with a permanent magnet synchronous generator," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Liaw, Kim Leong & Ong, Khai Chuin & Mohd Ali Zar, Muhammad Aliff B. & Lai, Wen Kang & Muhammad, M. Fadhli B. & Firmansyah, & Kurnia, Jundika C., 2023. "Experimental and numerical investigation of an innovative non-combustion impulse gas turbine for micro-scale electricity generation," Energy, Elsevier, vol. 266(C).
    13. Li, Xiaoming & Lv, Cui & Yang, Shaoqi & Li, Jian & Deng, Bicai & Li, Qing, 2019. "Preliminary design and performance analysis of a radial inflow turbine for a large-scale helium cryogenic system," Energy, Elsevier, vol. 167(C), pages 106-116.
    14. Cui, Guodong & Ren, Shaoran & Rui, Zhenhua & Ezekiel, Justin & Zhang, Liang & Wang, Hongsheng, 2018. "The influence of complicated fluid-rock interactions on the geothermal exploitation in the CO2 plume geothermal system," Applied Energy, Elsevier, vol. 227(C), pages 49-63.
    15. Kaczmarczyk, Tomasz Z. & Żywica, Grzegorz & Ihnatowicz, Eugeniusz, 2017. "The impact of changes in the geometry of a radial microturbine stage on the efficiency of the micro CHP plant based on ORC," Energy, Elsevier, vol. 137(C), pages 530-543.
    16. Peng Song & Jinju Sun & Shengyuan Wang & Xuesong Wang, 2022. "Multipoint Design Optimization of a Radial-Outflow Turbine for Kalina Cycle System Considering Flexible Operating Conditions and Variable Ammonia-Water Mass Fraction," Energies, MDPI, vol. 15(22), pages 1-19, November.
    17. Peng Li & Zhonghe Han & Xiaoqiang Jia & Zhongkai Mei & Xu Han, 2018. "Analysis of the Effects of Blade Installation Angle and Blade Number on Radial-Inflow Turbine Stator Flow Performance," Energies, MDPI, vol. 11(9), pages 1-15, August.
    18. Jun-Seong Kim & Do-Yeop Kim, 2020. "Preliminary Design and Off-Design Analysis of a Radial Outflow Turbine for Organic Rankine Cycles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    19. Meroni, Andrea & Robertson, Miles & Martinez-Botas, Ricardo & Haglind, Fredrik, 2018. "A methodology for the preliminary design and performance prediction of high-pressure ratio radial-inflow turbines," Energy, Elsevier, vol. 164(C), pages 1062-1078.
    20. Nithesh, K.G. & Chatterjee, Dhiman & Oh, Cheol & Lee, Young-Ho, 2016. "Design and performance analysis of radial-inflow turboexpander for OTEC application," Renewable Energy, Elsevier, vol. 85(C), pages 834-843.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2767-:d:1409215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.