IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v265y2023ics0360544222031991.html
   My bibliography  Save this article

Entropy production analysis of a radial inflow turbine with variable inlet guide vane for ORC application

Author

Listed:
  • Wang, Zhiqi
  • Xie, Baoqi
  • Xia, Xiaoxia
  • Luo, Lan
  • Yang, Huya
  • Li, Xin

Abstract

The fluctuation of heat source conditions leads to the off-design operation and efficiency reduction of the radial inflow turbine (RIT). The adjustment of the outlet angle of inlet guide vane (IGV) is an important way to improve the turbine performance under off-design conditions. Since the energy dissipation caused by friction and flow separation is the main reason for the reduction of RIT efficiency, the entropy production analysis method is used to diagnose the location with high local energy loss in the RIT and evaluate its total energy loss under different working conditions in this paper. Firstly, an appropriate outlet angle of the IGV is determined according to the inlet pressure and outlet pressure of the RIT in organic Rankine cycle (ORC). Then, the effects of inlet pressure and outlet pressure on its energy loss are studied. The results indicate that the average entropy production rate (EPR) of the rotor in the RIT is the highest, which is mainly from the tip clearance and the inlet region. More than 70% of total entropy production of the turbine comes from the rotor, followed by the diffuser. The turbine can achieve lower total entropy production at higher outlet pressure or lower inlet pressure. Compared with a fixed IGV, the turbine with variable IGV can achieve higher turbine efficiency and output power under off-design conditions. The maximum increase in the efficiency and output power of the turbine with variable IGV under different inlet pressures is 3.8% and 12.9%, respectively.

Suggested Citation

  • Wang, Zhiqi & Xie, Baoqi & Xia, Xiaoxia & Luo, Lan & Yang, Huya & Li, Xin, 2023. "Entropy production analysis of a radial inflow turbine with variable inlet guide vane for ORC application," Energy, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222031991
    DOI: 10.1016/j.energy.2022.126313
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222031991
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhiqi & Xie, Baoqi & Xia, Xiaoxia & Yang, Huya & Zuo, Qingsong & Liu, Zhipeng, 2022. "Energy loss of radial inflow turbine for organic Rankine cycle using mixture based on entropy production method," Energy, Elsevier, vol. 245(C).
    2. Yu, An & Tang, Qinghong & Chen, Huixiang & Zhou, Daqing, 2021. "Investigations of the thermodynamic entropy evaluation in a hydraulic turbine under various operating conditions," Renewable Energy, Elsevier, vol. 180(C), pages 1026-1043.
    3. Li, Xiaoming & Lv, Cui & Yang, Shaoqi & Li, Jian & Deng, Bicai & Li, Qing, 2019. "Preliminary design and performance analysis of a radial inflow turbine for a large-scale helium cryogenic system," Energy, Elsevier, vol. 167(C), pages 106-116.
    4. Kang, Seok Hun, 2012. "Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid," Energy, Elsevier, vol. 41(1), pages 514-524.
    5. Kim, Do-Yeop & Kim, You-Taek, 2017. "Preliminary design and performance analysis of a radial inflow turbine for ocean thermal energy conversion," Renewable Energy, Elsevier, vol. 106(C), pages 255-263.
    6. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    7. Sauret, Emilie & Rowlands, Andrew S., 2011. "Candidate radial-inflow turbines and high-density working fluids for geothermal power systems," Energy, Elsevier, vol. 36(7), pages 4460-4467.
    8. Zheming Tong & Zhewu Cheng & Shuiguang Tong, 2019. "Preliminary Design of Multistage Radial Turbines Based on Rotor Loss Characteristics under Variable Operating Conditions," Energies, MDPI, vol. 12(13), pages 1-15, July.
    9. Ghorani, Mohammad Mahdi & Sotoude Haghighi, Mohammad Hadi & Maleki, Ali & Riasi, Alireza, 2020. "A numerical study on mechanisms of energy dissipation in a pump as turbine (PAT) using entropy generation theory," Renewable Energy, Elsevier, vol. 162(C), pages 1036-1053.
    10. Sauret, Emilie & Gu, Yuantong, 2014. "Three-dimensional off-design numerical analysis of an organic Rankine cycle radial-inflow turbine," Applied Energy, Elsevier, vol. 135(C), pages 202-211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Jianqin & Wang, Huailin & Sun, Xilei & Bao, Huanhuan & Wang, Xun & Liu, Jingping, 2024. "Multi-objective optimization for impeller structure parameters of fuel cell air compressor using linear-based boosting model and reference vector guided evolutionary algorithm," Applied Energy, Elsevier, vol. 363(C).
    2. Li, Zhenggui & Xu, Lixin & Wang, Dong & Li, Deyou & Li, Wangxu, 2023. "Simulation analysis of energy characteristics of flow field in the transition process of pump condition outage of pump-turbine," Renewable Energy, Elsevier, vol. 219(P1).
    3. Pei, Ji & Shen, Jiawei & Wang, Wenjie & Yuan, Shouqi & Zhao, Jiantao, 2024. "Evaluating hydraulic dissipation in a reversible mixed-flow pump for micro-pumped hydro storage based on entropy production theory," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chengbin & Wu, Zhe & Wang, Jiadian & Ding, Ce & Gao, Tieyu & Chen, Yongping, 2023. "Thermodynamic performance of a radial-inflow turbine for ocean thermal energy conversion using ammonia," Renewable Energy, Elsevier, vol. 202(C), pages 907-920.
    2. Zou, Aihong & Chassaing, Jean-Camille & Persky, Rodney & Gu, YuanTong & Sauret, Emilie, 2019. "Uncertainty Quantification in high-density fluid radial-inflow turbines for renewable low-grade temperature cycles," Applied Energy, Elsevier, vol. 241(C), pages 313-330.
    3. Al Jubori, Ayad M. & Al-Dadah, Raya & Mahmoud, Saad, 2017. "Performance enhancement of a small-scale organic Rankine cycle radial-inflow turbine through multi-objective optimization algorithm," Energy, Elsevier, vol. 131(C), pages 297-311.
    4. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    5. Yao, Yubo & Fang, Song & Zhu, Shaolong & Xu, Zhuoren & Zhang, Hanwei & Gan, Haoran & Iqbal, Qasir & Qiu, Limin & Wang, Kai, 2024. "Optimal design and tip leakage flow characteristics analysis of radial inflow turbine used in organic Rankine and vapor compression refrigeration system," Energy, Elsevier, vol. 301(C).
    6. Witanowski, Łukasz & Ziółkowski, Paweł & Klonowicz, Piotr & Lampart, Piotr, 2023. "A hybrid approach to optimization of radial inflow turbine with principal component analysis," Energy, Elsevier, vol. 272(C).
    7. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    8. Kaczmarczyk, Tomasz Z. & Żywica, Grzegorz & Ihnatowicz, Eugeniusz, 2017. "The impact of changes in the geometry of a radial microturbine stage on the efficiency of the micro CHP plant based on ORC," Energy, Elsevier, vol. 137(C), pages 530-543.
    9. Nithesh, K.G. & Chatterjee, Dhiman & Oh, Cheol & Lee, Young-Ho, 2016. "Design and performance analysis of radial-inflow turboexpander for OTEC application," Renewable Energy, Elsevier, vol. 85(C), pages 834-843.
    10. Nithesh, K.G. & Chatterjee, Dhiman, 2016. "Numerical prediction of the performance of radial inflow turbine designed for ocean thermal energy conversion system," Applied Energy, Elsevier, vol. 167(C), pages 1-16.
    11. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    12. Al Jubori, Ayad M. & Al-Dadah, Raya K. & Mahmoud, Saad & Daabo, Ahmed, 2017. "Modelling and parametric analysis of small-scale axial and radial-outflow turbines for Organic Rankine Cycle applications," Applied Energy, Elsevier, vol. 190(C), pages 981-996.
    13. Yamada, Noboru & Tominaga, Yoshihito & Yoshida, Takanori, 2014. "Demonstration of 10-Wp micro organic Rankine cycle generator for low-grade heat recovery," Energy, Elsevier, vol. 78(C), pages 806-813.
    14. Lisheng Pan & Huaixin Wang, 2019. "Experimental Investigation on Performance of an Organic Rankine Cycle System Integrated with a Radial Flow Turbine," Energies, MDPI, vol. 12(4), pages 1-20, February.
    15. Ni, Jiaxin & Zhao, Li & Zhang, Zhengtao & Zhang, Ying & Zhang, Jianyuan & Deng, Shuai & Ma, Minglu, 2018. "Dynamic performance investigation of organic Rankine cycle driven by solar energy under cloudy condition," Energy, Elsevier, vol. 147(C), pages 122-141.
    16. Wang, Zhiqi & Xie, Baoqi & Xia, Xiaoxia & Yang, Huya & Zuo, Qingsong & Liu, Zhipeng, 2022. "Energy loss of radial inflow turbine for organic Rankine cycle using mixture based on entropy production method," Energy, Elsevier, vol. 245(C).
    17. Sorn, Kimsan & Deethayat, Thoranis & Asanakham, Attakorn & Vorayos, Nat & Kiatsiriroat, Tanongkiat, 2020. "Subcooling effect in steam heat source on irreversibility reduction during supplying heat to an organic Rankine cycle having a solar-assisted biomass boiler," Energy, Elsevier, vol. 194(C).
    18. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    19. Sung, Taehong & Yun, Eunkoo & Kim, Hyun Dong & Yoon, Sang Youl & Choi, Bum Seog & Kim, Kuisoon & Kim, Jangmok & Jung, Yang Beom & Kim, Kyung Chun, 2016. "Performance characteristics of a 200-kW organic Rankine cycle system in a steel processing plant," Applied Energy, Elsevier, vol. 183(C), pages 623-635.
    20. Calise, Francesco & Dentice d'Accadia, Massimo & Macaluso, Adriano & Vanoli, Laura & Piacentino, Antonio, 2016. "A novel solar-geothermal trigeneration system integrating water desalination: Design, dynamic simulation and economic assessment," Energy, Elsevier, vol. 115(P3), pages 1533-1547.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222031991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.