IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2552-d1401477.html
   My bibliography  Save this article

Soil Enzyme Response and Calorific Value of Zea mays Used for the Phytoremediation of Soils Contaminated with Diesel Oil

Author

Listed:
  • Agata Borowik

    (Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

  • Jadwiga Wyszkowska

    (Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

  • Magdalena Zaborowska

    (Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

  • Jan Kucharski

    (Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

Abstract

Ensuring a stable and cost-effective energy supply is a major challenge for the International Energy Agency (IEA). Additionally, the effectiveness of vermiculite and dolomite in mitigating the adverse effects of diesel oil, a petroleum-derived product, on plant growth and development, and on the biochemical activity of the soil, were assessed. Therefore, an attempt was made in the study to determine the energy properties of Zea mays , which is suitable for cultivation in contaminated areas. For these purposes, several parameters were analyzed in its biomass, including calorific value (Q), heating value (Hv), energy yield (Yep), ash content, and the presence of carbon (C), hydrogen (H), sulfur (S), nitrogen (N), and oxygen (O). Biochemical activity was measured through the evaluation of soil enzymes serving as indicators for the carbon (dehydrogenases, catalase, β -glucosidase), nitrogen (urease), sulfur (arylsulfatase), and phosphorus (acid and alkaline phosphatase) cycles. The plant greenness index was also determined. It has been demonstrated that diesel oil does not alter the calorific value of Zea mays biomass but significantly reduces the biomass quantity and destabilizes the biochemical properties of the soil. Zea mays contained an average of 6.84% ash, 49.88% C, 5.65% H, 0.17% S, 2.90% N, and 34.57% O. The calorific value of Zea mays ranged from 15.02 to 15.54 MJ kg −1 d.m. of plants, and the heating value ranged from 18.25 to 19.21 MJ kg −1 d.m. of plants. The biomass obtained from contaminated soil is recommended for energy purposes. The sorbents used—vermiculite and dolomite—proved to be less effective in the remediation of soil contaminated with diesel oil.

Suggested Citation

  • Agata Borowik & Jadwiga Wyszkowska & Magdalena Zaborowska & Jan Kucharski, 2024. "Soil Enzyme Response and Calorific Value of Zea mays Used for the Phytoremediation of Soils Contaminated with Diesel Oil," Energies, MDPI, vol. 17(11), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2552-:d:1401477
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2552/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2552/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jadwiga Wyszkowska & Agata Borowik & Jan Kucharski, 2022. "The Role of Grass Compost and Zea Mays in Alleviating Toxic Effects of Tetracycline on the Soil Bacteria Community," IJERPH, MDPI, vol. 19(12), pages 1-26, June.
    2. Jadwiga Wyszkowska & Agata Borowik & Magdalena Zaborowska & Jan Kucharski, 2023. "Calorific Value of Zea mays Biomass Derived from Soil Contaminated with Chromium (VI) Disrupting the Soil’s Biochemical Properties," Energies, MDPI, vol. 16(9), pages 1-19, April.
    3. J. Wyszkowska & J. Kucharski & E. Wałdowska, 2002. "The influence of diesel oil contamination on soil microorganisms and oat growth," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 48(2), pages 51-57.
    4. Matteo Baldelli & Lorenzo Bartolucci & Stefano Cordiner & Giorgio D’Andrea & Emanuele De Maina & Vincenzo Mulone, 2023. "Biomass to H2: Evaluation of the Impact of PV and TES Power Supply on the Performance of an Integrated Bio-Thermo-Chemical Upgrading Process for Wet Residual Biomass," Energies, MDPI, vol. 16(7), pages 1-17, March.
    5. Mariola Chomczyńska & Małgorzata Pawłowska & Oliwia Szczepaniak & Ewelina Duma, 2022. "Biogas Generation from Maize and Cocksfoot Growing in Degraded Soil Enriched with New Zeolite Substrate," Energies, MDPI, vol. 15(1), pages 1-13, January.
    6. J. Wyszkowska & J. Kucharski & E. Wałdowska, 2002. "The influence of diesel oil contamination on soil enzymes activity," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 48(2), pages 58-62.
    7. Ian J. Bonner & Kara G. Cafferty & David J. Muth & Mark D. Tomer & David E. James & Sarah A. Porter & Douglas L. Karlen, 2014. "Opportunities for Energy Crop Production Based on Subfield Scale Distribution of Profitability," Energies, MDPI, vol. 7(10), pages 1-18, October.
    8. Olaf Erenstein & Moti Jaleta & Kai Sonder & Khondoker Mottaleb & B.M. Prasanna, 2022. "Global maize production, consumption and trade: trends and R&D implications," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(5), pages 1295-1319, October.
    9. Bruno Esteves & Umut Sen & Helena Pereira, 2023. "Influence of Chemical Composition on Heating Value of Biomass: A Review and Bibliometric Analysis," Energies, MDPI, vol. 16(10), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirosław Wyszkowski & Natalia Kordala, 2024. "Effects of Humic Acids on Calorific Value and Chemical Composition of Maize Biomass in Iron-Contaminated Soil Phytostabilisation," Energies, MDPI, vol. 17(7), pages 1-19, April.
    2. M. Wyszkowski & J. Wyszkowska, 2005. "Effect of enzymatic activity of diesel oil contaminated soil on the chemical composition of oat (Avena sativa L.) and maize (Zea mays L.)," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 51(8), pages 360-367.
    3. L. Růžek & K. Voříšek & J. Vráblíková & S. Strnadová & P. Vráblík, 2003. "Chemical and biological characteristics of reclaimed soils in the Most ŕegion (Czecg Reooublic)," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 49(8), pages 346-351.
    4. J. Wyszkowska & M. Wyszkowski, 2006. "Role of compost, bentonite and lime in recovering the biochemical equilibrium of diesel oil contaminated soil," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 52(11), pages 505-514.
    5. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Wendelin Wichtmann & Grzegorz Zając & Piotr Banaszuk, 2023. "Common Reed and Maize Silage Co-Digestion as a Pathway towards Sustainable Biogas Production," Energies, MDPI, vol. 16(2), pages 1-25, January.
    6. Kamila Nowosad & Jan Bocianowski & Farzad Kianersi & Alireza Pour-Aboughadareh, 2023. "Analysis of Linkage on Interaction of Main Aspects (Genotype by Environment Interaction, Stability and Genetic Parameters) of 1000 Kernels in Maize ( Zea mays L.)," Agriculture, MDPI, vol. 13(10), pages 1-17, October.
    7. Yangjie Ren & Yitong Zhang & Shiyang Guo & Ben Wang & Siqi Wang & Wei Gao, 2023. "Pipe Cavitation Parameters Reveal Bubble Embolism Dynamics in Maize Xylem Vessels across Water Potential Gradients," Agriculture, MDPI, vol. 13(10), pages 1-17, September.
    8. Małgorzata Baćmaga & Jadwiga Wyszkowska & Agata Borowik & Jan Kucharski, 2024. "Effect of Previous Crop on the Structure of Bacterial and Fungal Communities during the Growth of Vicia faba L. spp. minor," Agriculture, MDPI, vol. 14(3), pages 1-25, February.
    9. Anna Barriviera & Diego Bosco & Sara Daniotti & Carlo Massimo Pozzi & Maria Elena Saija & Ilaria Re, 2023. "Assessing Farmers’ Willingness to Pay for Adopting Sustainable Corn Traits: A Choice Experiment in Italy," Sustainability, MDPI, vol. 15(18), pages 1-13, September.
    10. Lekarkar, Katoria & Nkwasa, Albert & Villani, Lorenzo & van Griensven, Ann, 2024. "Localizing agricultural impacts of 21st century climate pathways in data scarce catchments: A case study of the Nyando catchment, Kenya," Agricultural Water Management, Elsevier, vol. 294(C).
    11. Jadwiga Wyszkowska & Agata Borowik & Magdalena Zaborowska & Jan Kucharski, 2023. "Biochar, Halloysite, and Alginite Improve the Quality of Soil Contaminated with Petroleum Products," Agriculture, MDPI, vol. 13(9), pages 1-21, August.
    12. Buttinelli, Rebecca & Cortignani, Raffaele & Caracciolo, Francesco, 2024. "Irrigation water economic value and productivity: An econometric estimation for maize grain production in Italy," Agricultural Water Management, Elsevier, vol. 295(C).
    13. Kirk E. LaGory & Jules F. Cacho & Colleen R. Zumpf & DoKyoung Lee & Jeremy Feinstein & Dario Dematties & Leroy J. Walston & Nictor Namoi & M. Cristina Negri, 2024. "Bird Species Use of Bioenergy Croplands in Illinois, USA—Can Advanced Switchgrass Cultivars Provide Suitable Habitats for Breeding Grassland Birds?," Sustainability, MDPI, vol. 16(11), pages 1-16, June.
    14. Huang, Shiyang & Hu, Guiping, 2018. "Biomass supply contract pricing and environmental policy analysis: A simulation approach," Energy, Elsevier, vol. 145(C), pages 557-566.
    15. Krzysztof Pilarski & Agnieszka A. Pilarska & Alicja Kolasa-Więcek & Dariusz Suszanowicz, 2023. "An Agricultural Biogas Plant as a Thermodynamic System: A Study of Efficiency in the Transformation from Primary to Secondary Energy," Energies, MDPI, vol. 16(21), pages 1-15, November.
    16. Charlotte Cautereels & Jolien Smets & Jonas De Saeger & Lloyd Cool & Yanmei Zhu & Anna Zimmermann & Jan Steensels & Anton Gorkovskiy & Thomas B. Jacobs & Kevin J. Verstrepen, 2024. "Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Kurucz, Erika & Fári, Miklós G. & Antal, Gabriella & Gabnai, Zoltán & Popp, József & Bai, Attila, 2018. "Opportunities for the production and economics of Virginia fanpetals (Sida hermaphrodita)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 824-834.
    18. Qiu, Bingwen & Jian, Zeyu & Yang, Peng & Tang, Zhenghong & Zhu, Xiaolin & Duan, Mingjie & Yu, Qiangyi & Chen, Xuehong & Zhang, Miao & Tu, Ping & Xu, Weiming & Zhao, Zhiyuan, 2024. "Unveiling grain production patterns in China (2005–2020) towards targeted sustainable intensification," Agricultural Systems, Elsevier, vol. 216(C).
    19. Meng Wang & Haiming Duan & Cheng Zhou & Li Yu & Xiangtao Meng & Wenjie Lu & Haibing Yu, 2024. "Synergistic Effects of Chemical Fungicides with Crude Extracts from Bacillus amyloliquefaciens to Control Northern Corn Leaf Blight," Agriculture, MDPI, vol. 14(4), pages 1-16, April.
    20. Rafał Januszkiewicz & Grzegorz Kulczycki & Mateusz Samoraj, 2023. "Foliar Fertilization of Crop Plants in Polish Agriculture," Agriculture, MDPI, vol. 13(9), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2552-:d:1401477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.