IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5322-d1506775.html
   My bibliography  Save this article

Energy Quality of Corn Biomass from Gasoline-Contaminated Soils Remediated with Sorbents

Author

Listed:
  • Agata Borowik

    (Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

  • Jadwiga Wyszkowska

    (Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

  • Magdalena Zaborowska

    (Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

  • Jan Kucharski

    (Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

Abstract

Soil contaminated with petroleum-derived products should be used to cultivate energy crops. One such crop is Zea mays . Therefore, a study was performed to determine the suitability of Zea mays biomass obtained from gasoline-contaminated soil for energy purposes. The analysis included determining the heat of combustion and calorific value of the biomass, as well as the content of nitrogen, carbon, hydrogen, oxygen, sulfur, and ash in the biomass. Additionally, the suitability of vermiculite, dolomite, perlite, and agrobasalt for the phytostabilization of gasoline-contaminated soil was evaluated. It was found that the application of sorbents to gasoline-contaminated soil significantly reduced the severe negative effects of this petroleum product on the growth and development of Zea mays . Gasoline contamination of the soil caused a significant increase in ash, nitrogen, and sulfur, along with a decrease in carbon and oxygen content. However, it had no negative effect on the heat of combustion or calorific value of the biomass, although it did reduce the energy production from Zea mays biomass due to a reduction in yield. An important achievement of the study is the demonstration that all the applied sorbents have a positive effect on soil stabilization, which in turn enhances the amount of Zea mays biomass harvested and the energy produced from it. The best results were observed after the application of agrobasalt, dolomite, and vermiculite on gasoline-contaminated soil. Therefore, these sorbents can be recommended for the phytostabilization of gasoline-contaminated soil intended for the cultivation of energy crops.

Suggested Citation

  • Agata Borowik & Jadwiga Wyszkowska & Magdalena Zaborowska & Jan Kucharski, 2024. "Energy Quality of Corn Biomass from Gasoline-Contaminated Soils Remediated with Sorbents," Energies, MDPI, vol. 17(21), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5322-:d:1506775
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5322/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5322/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jadwiga Wyszkowska & Agata Borowik & Jan Kucharski, 2022. "The Role of Grass Compost and Zea Mays in Alleviating Toxic Effects of Tetracycline on the Soil Bacteria Community," IJERPH, MDPI, vol. 19(12), pages 1-26, June.
    2. Huang, Yu-Fong & Lo, Shang-Lien, 2020. "Predicting heating value of lignocellulosic biomass based on elemental analysis," Energy, Elsevier, vol. 191(C).
    3. Jadwiga Wyszkowska & Agata Borowik & Magdalena Zaborowska & Jan Kucharski, 2023. "Calorific Value of Zea mays Biomass Derived from Soil Contaminated with Chromium (VI) Disrupting the Soil’s Biochemical Properties," Energies, MDPI, vol. 16(9), pages 1-19, April.
    4. Amaral, Lucimar Venâncio & Santos, Nathália Duarte Souza Alvarenga & Roso, Vinícius Rückert & Sebastião, Rita de Cássia de Oliveira & Pujatti, Fabrício José Pacheco, 2021. "Effects of gasoline composition on engine performance, exhaust gases and operational costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Jadwiga Wyszkowska & Edyta Boros-Lajszner & Jan Kucharski, 2024. "The Impact of Soil Contamination with Lead on the Biomass of Maize Intended for Energy Purposes, and the Biochemical and Physicochemical Properties of the Soil," Energies, MDPI, vol. 17(5), pages 1-18, February.
    6. Agata Borowik & Jadwiga Wyszkowska & Magdalena Zaborowska & Jan Kucharski, 2024. "Soil Enzyme Response and Calorific Value of Zea mays Used for the Phytoremediation of Soils Contaminated with Diesel Oil," Energies, MDPI, vol. 17(11), pages 1-21, May.
    7. Yang, Lan & Wang, Xue-Chao & Dai, Min & Chen, Bin & Qiao, Yuanbo & Deng, Huijing & Zhang, Dingfan & Zhang, Yizhe & Villas Bôas de Almeida, Cecília Maria & Chiu, Anthony S.F. & Klemeš, Jiří Jaromír & W, 2021. "Shifting from fossil-based economy to bio-based economy: Status quo, challenges, and prospects," Energy, Elsevier, vol. 228(C).
    8. João Gonçalves & Jorge Freitas & Igor Fernandes & Pedro Silva, 2023. "Microalgae as Biofertilizers: A Sustainable Way to Improve Soil Fertility and Plant Growth," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    9. Jadwiga Wyszkowska & Agata Borowik & Magdalena Zaborowska & Jan Kucharski, 2023. "Biochar, Halloysite, and Alginite Improve the Quality of Soil Contaminated with Petroleum Products," Agriculture, MDPI, vol. 13(9), pages 1-21, August.
    10. Piotr Bórawski & Aneta Bełdycka-Bórawska & Zuzana Kapsdorferová & Tomasz Rokicki & Andrzej Parzonko & Lisa Holden, 2024. "Perspectives of Electricity Production from Biogas in the European Union," Energies, MDPI, vol. 17(5), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agata Borowik & Jadwiga Wyszkowska & Magdalena Zaborowska & Jan Kucharski, 2024. "Soil Enzyme Response and Calorific Value of Zea mays Used for the Phytoremediation of Soils Contaminated with Diesel Oil," Energies, MDPI, vol. 17(11), pages 1-21, May.
    2. Alex Borges Pereira & Antonio José Vinha Zanuncio & Amélia Guimarães Carvalho & Angélica de Cassia Oliveira Carneiro & Vinícius Resende de Castro & Ana Marcia Macedo Ladeira Carvalho & Olivia Pereira , 2024. "Sustainable Solid Biofuel Production: Transforming Sewage Sludge and Pinus sp. Sawdust into Resources for the Circular Economy," Sustainability, MDPI, vol. 16(11), pages 1-11, May.
    3. Joanicjusz Nazarko & Ewa Chodakowska & Łukasz Nazarko, 2022. "Evaluating the Transition of the European Union Member States towards a Circular Economy," Energies, MDPI, vol. 15(11), pages 1-24, May.
    4. Pankaj Kumar & Vinod Kumar, 2024. "Preface to the Special Issue “Agricultural Environmental Pollution, Risk Assessment, and Control”," Agriculture, MDPI, vol. 14(1), pages 1-3, January.
    5. Chen, Xiaoling & Zhang, Yongxing & Xu, Baoshen & Li, Yifan, 2022. "A simple model for estimation of higher heating value of oily sludge," Energy, Elsevier, vol. 239(PA).
    6. Mohd Fadzli Hamid & Yew Heng Teoh & Mohamad Yusof Idroas & Mazlan Mohamed & Shukriwani Sa’ad & Sharzali Che Mat & Muhammad Khalil Abdullah & Thanh Danh Le & Heoy Geok How & Huu Tho Nguyen, 2022. "A Review of the Emulsification Method for Alternative Fuels Used in Diesel Engines," Energies, MDPI, vol. 15(24), pages 1-26, December.
    7. Mirosław Wyszkowski & Natalia Kordala, 2024. "Effects of Humic Acids on Calorific Value and Chemical Composition of Maize Biomass in Iron-Contaminated Soil Phytostabilisation," Energies, MDPI, vol. 17(7), pages 1-19, April.
    8. Umberto Di Matteo & Sofia Agostinelli, 2022. "Big Data Analysis for Optimising the Decision-Making Process in Sustainable Energy Action Plans: A Multi-Criteria Evaluation Approach Applied to Sicilian Regional Recovery and Resilience Plans," Energies, MDPI, vol. 15(20), pages 1-22, October.
    9. Moritz Pollack & Andrea Lück & Mario Wolf & Eckhard Kraft & Conrad Völker, 2023. "Energy and Business Synergy: Leveraging Biogenic Resources from Agriculture, Waste, and Wastewater in German Rural Areas," Sustainability, MDPI, vol. 15(24), pages 1-26, December.
    10. Chong, Cheng Tung & Fan, Yee Van & Lee, Chew Tin & Klemeš, Jiří Jaromír, 2022. "Post COVID-19 ENERGY sustainability and carbon emissions neutrality," Energy, Elsevier, vol. 241(C).
    11. Małgorzata Baćmaga & Jadwiga Wyszkowska & Agata Borowik & Jan Kucharski, 2024. "Effect of Previous Crop on the Structure of Bacterial and Fungal Communities during the Growth of Vicia faba L. spp. minor," Agriculture, MDPI, vol. 14(3), pages 1-22, February.
    12. Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "Wind Energy Market in Poland in the Background of the Baltic Sea Bordering Countries in the Era of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, March.
    13. Henrik Zsiborács & András Vincze & István Háber & Gábor Pintér & Nóra Hegedűsné Baranyai, 2023. "Challenges of Establishing Solar Power Stations in Hungary," Energies, MDPI, vol. 16(1), pages 1-19, January.
    14. Daniela Nicoleta Sahlian & Adriana Florina Popa & Ștefania Amalia Nicoară & Corina Graziella Bâtcă-Dumitru, 2023. "Examining the Causality between Integrated Reporting and Stock Market Capitalization. The Case of the European Renewable Energy Equipment and Services Industry," Energies, MDPI, vol. 16(3), pages 1-12, January.
    15. Carvalho, Pollyana R. & Medeiros, Samuel L.S. & Paixão, Raul L. & Figueredo, Igor M. & Mattos, Adriano L.A. & Rios, M. Alexsandra S., 2023. "Thermogravimetric pyrolysis of residual biomasses obtained post-extraction of carnauba wax: Determination of kinetic parameters using Friedman's isoconversional method," Renewable Energy, Elsevier, vol. 207(C), pages 703-713.
    16. Jadwiga Wyszkowska & Agata Borowik & Magdalena Zaborowska & Jan Kucharski, 2023. "Biochar, Halloysite, and Alginite Improve the Quality of Soil Contaminated with Petroleum Products," Agriculture, MDPI, vol. 13(9), pages 1-21, August.
    17. Barbosa, Társis Prado & Eckert, Jony Javorski & Roso, Vinícius Rückert & Pujatti, Fabrício José Pacheco & da Silva, Leonardo Adolpho Rodrigues & Horta Gutiérrez, Juan Carlos, 2021. "Fuel saving and lower pollutants emissions using an ethanol-fueled engine in a hydraulic hybrid passengers vehicle," Energy, Elsevier, vol. 235(C).
    18. Agampodi Gihan S. D. De Silva & Z K. Hashim & Wogene Solomon & Jun-Bin Zhao & Györgyi Kovács & István M. Kulmány & Zoltán Molnár, 2024. "Unveiling the Role of Edaphic Microalgae in Soil Carbon Sequestration: Potential for Agricultural Inoculants in Climate Change Mitigation," Agriculture, MDPI, vol. 14(11), pages 1-33, November.
    19. Kartal, Furkan & Özveren, Uğur, 2022. "Prediction of torrefied biomass properties from raw biomass," Renewable Energy, Elsevier, vol. 182(C), pages 578-591.
    20. Guilherme Anacleto dos Reis & Walter Jose Martínez-Burgos & Roberta Pozzan & Yenis Pastrana Puche & Diego Ocán-Torres & Pedro de Queiroz Fonseca Mota & Cristine Rodrigues & Josilene Lima Serra & Thama, 2024. "Comprehensive Review of Microbial Inoculants: Agricultural Applications, Technology Trends in Patents, and Regulatory Frameworks," Sustainability, MDPI, vol. 16(19), pages 1-33, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5322-:d:1506775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.