IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5322-d1506775.html
   My bibliography  Save this article

Energy Quality of Corn Biomass from Gasoline-Contaminated Soils Remediated with Sorbents

Author

Listed:
  • Agata Borowik

    (Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

  • Jadwiga Wyszkowska

    (Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

  • Magdalena Zaborowska

    (Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

  • Jan Kucharski

    (Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

Abstract

Soil contaminated with petroleum-derived products should be used to cultivate energy crops. One such crop is Zea mays . Therefore, a study was performed to determine the suitability of Zea mays biomass obtained from gasoline-contaminated soil for energy purposes. The analysis included determining the heat of combustion and calorific value of the biomass, as well as the content of nitrogen, carbon, hydrogen, oxygen, sulfur, and ash in the biomass. Additionally, the suitability of vermiculite, dolomite, perlite, and agrobasalt for the phytostabilization of gasoline-contaminated soil was evaluated. It was found that the application of sorbents to gasoline-contaminated soil significantly reduced the severe negative effects of this petroleum product on the growth and development of Zea mays . Gasoline contamination of the soil caused a significant increase in ash, nitrogen, and sulfur, along with a decrease in carbon and oxygen content. However, it had no negative effect on the heat of combustion or calorific value of the biomass, although it did reduce the energy production from Zea mays biomass due to a reduction in yield. An important achievement of the study is the demonstration that all the applied sorbents have a positive effect on soil stabilization, which in turn enhances the amount of Zea mays biomass harvested and the energy produced from it. The best results were observed after the application of agrobasalt, dolomite, and vermiculite on gasoline-contaminated soil. Therefore, these sorbents can be recommended for the phytostabilization of gasoline-contaminated soil intended for the cultivation of energy crops.

Suggested Citation

  • Agata Borowik & Jadwiga Wyszkowska & Magdalena Zaborowska & Jan Kucharski, 2024. "Energy Quality of Corn Biomass from Gasoline-Contaminated Soils Remediated with Sorbents," Energies, MDPI, vol. 17(21), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5322-:d:1506775
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5322/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5322/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jadwiga Wyszkowska & Agata Borowik & Jan Kucharski, 2022. "The Role of Grass Compost and Zea Mays in Alleviating Toxic Effects of Tetracycline on the Soil Bacteria Community," IJERPH, MDPI, vol. 19(12), pages 1-26, June.
    2. Huang, Yu-Fong & Lo, Shang-Lien, 2020. "Predicting heating value of lignocellulosic biomass based on elemental analysis," Energy, Elsevier, vol. 191(C).
    3. Jadwiga Wyszkowska & Agata Borowik & Magdalena Zaborowska & Jan Kucharski, 2023. "Calorific Value of Zea mays Biomass Derived from Soil Contaminated with Chromium (VI) Disrupting the Soil’s Biochemical Properties," Energies, MDPI, vol. 16(9), pages 1-19, April.
    4. Amaral, Lucimar Venâncio & Santos, Nathália Duarte Souza Alvarenga & Roso, Vinícius Rückert & Sebastião, Rita de Cássia de Oliveira & Pujatti, Fabrício José Pacheco, 2021. "Effects of gasoline composition on engine performance, exhaust gases and operational costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Jadwiga Wyszkowska & Edyta Boros-Lajszner & Jan Kucharski, 2024. "The Impact of Soil Contamination with Lead on the Biomass of Maize Intended for Energy Purposes, and the Biochemical and Physicochemical Properties of the Soil," Energies, MDPI, vol. 17(5), pages 1-18, February.
    6. Agata Borowik & Jadwiga Wyszkowska & Magdalena Zaborowska & Jan Kucharski, 2024. "Soil Enzyme Response and Calorific Value of Zea mays Used for the Phytoremediation of Soils Contaminated with Diesel Oil," Energies, MDPI, vol. 17(11), pages 1-21, May.
    7. Yang, Lan & Wang, Xue-Chao & Dai, Min & Chen, Bin & Qiao, Yuanbo & Deng, Huijing & Zhang, Dingfan & Zhang, Yizhe & Villas Bôas de Almeida, Cecília Maria & Chiu, Anthony S.F. & Klemeš, Jiří Jaromír & W, 2021. "Shifting from fossil-based economy to bio-based economy: Status quo, challenges, and prospects," Energy, Elsevier, vol. 228(C).
    8. João Gonçalves & Jorge Freitas & Igor Fernandes & Pedro Silva, 2023. "Microalgae as Biofertilizers: A Sustainable Way to Improve Soil Fertility and Plant Growth," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    9. Jadwiga Wyszkowska & Agata Borowik & Magdalena Zaborowska & Jan Kucharski, 2023. "Biochar, Halloysite, and Alginite Improve the Quality of Soil Contaminated with Petroleum Products," Agriculture, MDPI, vol. 13(9), pages 1-21, August.
    10. Piotr Bórawski & Aneta Bełdycka-Bórawska & Zuzana Kapsdorferová & Tomasz Rokicki & Andrzej Parzonko & Lisa Holden, 2024. "Perspectives of Electricity Production from Biogas in the European Union," Energies, MDPI, vol. 17(5), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agata Borowik & Jadwiga Wyszkowska & Magdalena Zaborowska & Jan Kucharski, 2024. "Soil Enzyme Response and Calorific Value of Zea mays Used for the Phytoremediation of Soils Contaminated with Diesel Oil," Energies, MDPI, vol. 17(11), pages 1-21, May.
    2. Alex Borges Pereira & Antonio José Vinha Zanuncio & Amélia Guimarães Carvalho & Angélica de Cassia Oliveira Carneiro & Vinícius Resende de Castro & Ana Marcia Macedo Ladeira Carvalho & Olivia Pereira , 2024. "Sustainable Solid Biofuel Production: Transforming Sewage Sludge and Pinus sp. Sawdust into Resources for the Circular Economy," Sustainability, MDPI, vol. 16(11), pages 1-11, May.
    3. Joanicjusz Nazarko & Ewa Chodakowska & Łukasz Nazarko, 2022. "Evaluating the Transition of the European Union Member States towards a Circular Economy," Energies, MDPI, vol. 15(11), pages 1-24, May.
    4. Chen, Xiaoling & Zhang, Yongxing & Xu, Baoshen & Li, Yifan, 2022. "A simple model for estimation of higher heating value of oily sludge," Energy, Elsevier, vol. 239(PA).
    5. Małgorzata Baćmaga & Jadwiga Wyszkowska & Agata Borowik & Jan Kucharski, 2024. "Effect of Previous Crop on the Structure of Bacterial and Fungal Communities during the Growth of Vicia faba L. spp. minor," Agriculture, MDPI, vol. 14(3), pages 1-22, February.
    6. Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "Wind Energy Market in Poland in the Background of the Baltic Sea Bordering Countries in the Era of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, March.
    7. Pasan Dunuwila & Enoka Munasinghe & V. H. L. Rodrigo & Wenjing T. Gong & Ichiro Daigo & Naohiro Goto, 2025. "Revealing the Environmental Footprint of Crepe Rubber Production: A Comprehensive Life Cycle Assessment of a Crepe Rubber Factory in Sri Lanka," Sustainability, MDPI, vol. 17(3), pages 1-20, February.
    8. Daniela Nicoleta Sahlian & Adriana Florina Popa & Ștefania Amalia Nicoară & Corina Graziella Bâtcă-Dumitru, 2023. "Examining the Causality between Integrated Reporting and Stock Market Capitalization. The Case of the European Renewable Energy Equipment and Services Industry," Energies, MDPI, vol. 16(3), pages 1-12, January.
    9. Barbosa, Társis Prado & Eckert, Jony Javorski & Roso, Vinícius Rückert & Pujatti, Fabrício José Pacheco & da Silva, Leonardo Adolpho Rodrigues & Horta Gutiérrez, Juan Carlos, 2021. "Fuel saving and lower pollutants emissions using an ethanol-fueled engine in a hydraulic hybrid passengers vehicle," Energy, Elsevier, vol. 235(C).
    10. Guilherme Anacleto dos Reis & Walter Jose Martínez-Burgos & Roberta Pozzan & Yenis Pastrana Puche & Diego Ocán-Torres & Pedro de Queiroz Fonseca Mota & Cristine Rodrigues & Josilene Lima Serra & Thama, 2024. "Comprehensive Review of Microbial Inoculants: Agricultural Applications, Technology Trends in Patents, and Regulatory Frameworks," Sustainability, MDPI, vol. 16(19), pages 1-33, October.
    11. Mollanoori, Mohammad & Dehghan, Ali Akbar, 2024. "Estimating the higher heating value and chemical exergy of solid, liquid, and natural gas fossil fuels," Energy, Elsevier, vol. 302(C).
    12. Comineti, Camila da Silva Serra & Pretel, Ariel Fernandes & Schlindwein, Madalena Maria, 2023. "The type of development promoted by Brazilian National Biofuels Policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    13. Nilay Kumar Sarker & Prasad Kaparaju, 2024. "Microalgal Bioeconomy: A Green Economy Approach Towards Achieving Sustainable Development Goals," Sustainability, MDPI, vol. 16(24), pages 1-45, December.
    14. Manish Sakhakarmy & Ayden Kemp & Bijoy Biswas & Sagar Kafle & Sushil Adhikari, 2024. "A Comparative Analysis of Bio-Oil Collected Using an Electrostatic Precipitator from the Pyrolysis of Douglas Fir, Eucalyptus, and Poplar Biomass," Energies, MDPI, vol. 17(12), pages 1-13, June.
    15. Ting Lei & Ping Xie, 2024. "Fostering Enterprise Innovation: The Impact of China’s Pilot Free Trade Zones," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 10412-10441, September.
    16. Duarte Souza Alvarenga Santos, Nathália & Rückert Roso, Vinícius & Teixeira Malaquias, Augusto César & Coelho Baêta, José Guilherme, 2021. "Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    17. Hongli Chen & Liqiang Zhang & Zhongliang Huang & Zijian Wu & Mengjiao Tan & Xuan Zhang & Longbo Jiang & Xiaoli Qin & Jing Huang & Hui Li, 2022. "Effect of Anoxic Atmosphere on the Physicochemical and Pelletization Properties of Pinus massoniana Sawdust during Storage," IJERPH, MDPI, vol. 20(1), pages 1-16, December.
    18. Marcin Cichosz & Sławomir Łazarski & Andrzej Butarewicz & Urszula Kiełkowska, 2023. "Biogas Production—The Effect of the Zinc Concentration on the Profile of Volatile Fatty Acids in Fermentation Mixtures," Energies, MDPI, vol. 16(21), pages 1-24, November.
    19. Rafał Wyszomierski & Piotr Bórawski & Lisa Holden & Aneta Bełdycka-Bórawska & Tomasz Rokicki & Andrzej Parzonko, 2025. "Competitive Potential of Stable Biomass in Poland Compared to the European Union in the Aspect of Sustainability," Resources, MDPI, vol. 14(2), pages 1-21, January.
    20. Pankaj Kumar & Vinod Kumar, 2024. "Preface to the Special Issue “Agricultural Environmental Pollution, Risk Assessment, and Control”," Agriculture, MDPI, vol. 14(1), pages 1-3, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5322-:d:1506775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.