IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3938-d1141083.html
   My bibliography  Save this article

Sand and Dust Storms’ Impact on the Efficiency of the Photovoltaic Modules Installed in Baghdad: A Review Study with an Empirical Investigation

Author

Listed:
  • Miqdam T. Chaichan

    (Energy and Renewable Energies Technology Center, University of Technology, Baghdad 10001, Iraq)

  • Hussein A. Kazem

    (Faculty of Engineering, Sohar University, P.O. Box 44, Sohar 311, Oman)

  • Ali H. A. Al-Waeli

    (Engineering Department, American University of Iraq, Sulaymaniyah 46001, Iraq)

  • Kamaruzzaman Sopian

    (Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia)

  • Mohammed A. Fayad

    (Energy and Renewable Energies Technology Center, University of Technology, Baghdad 10001, Iraq)

  • Wissam H. Alawee

    (Control and Systems Engineering Department, University of Technology, Baghdad 19006, Iraq)

  • Hayder A. Dhahad

    (Mechanical Engineering Department, University of Technology, Baghdad 10066, Iraq)

  • Wan Nor Roslam Wan Isahak

    (Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43000, Selangor, Malaysia)

  • Ahmed A. Al-Amiery

    (Energy and Renewable Energies Technology Center, University of Technology, Baghdad 10001, Iraq
    Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43000, Selangor, Malaysia)

Abstract

Airborne dust and dust storms are natural disasters that transport dust over long distances from the source basin, sometimes reaching hundreds of kilometers. Today, Iraq is a basin that produces dust storms that strike all neighboring countries such as Iran, Kuwait and Saudi Arabia. These storms affect the productivity and capacity of the photovoltaic modules and reduce the amount of electricity that is generated clearly. Airborne dust reduces the intensity of solar radiation by scattering and absorbing it. In addition, the dust accumulated on the photovoltaic modules causes a deterioration in their productivity. In this study, an extensive review of wind movement and its sources, especially those that hit the city of Baghdad, the capital of Iraq, was conducted. Practical experiments were also carried out during a storm to measure important variables that had not been measured practically before at this site. The experimental tests were carried out starting from 1 April 2022 and continued until 12 April. Within this period, a dust storm occurred that lasted for three consecutive days that was considered one of the most severe storms that the city of Baghdad had experienced in the last few years. Practical measurements showed a deterioration in the solar radiation intensity by up to 54.5% compared to previous days. The air temperature during the storm decreased by 21.09% compared to the days before the storm. From the measurements of ultrafine aerosol particles PM1 and PM2.5, there was a significant increase of 569.9% and 441% compared to the days before the storm, respectively. Additionally, the measurements showed an increase of 217.22% and 319.21% in PM10 and total suspended particles, respectively. Indoor performance experiments showed a deterioration of current, voltage, power and electrical efficiency by 32.28%, 14.45%, 38.52% and 65.58%, respectively, due to dust accumulated during the storm days compared to the previous days. In the outdoor experiments, the rates of deterioration of current, voltage, power and electrical efficiency were greater, reaching 60.24%, 30.7%, 62.3% and 82.93%, respectively, during the storm days compared to the days before it. During a storm, cleaning the panels is futile due to the high concentration of dust in the air, especially by water. However, the photovoltaic modules can be dry cleaned with bristle brushes after the storm has subsided.

Suggested Citation

  • Miqdam T. Chaichan & Hussein A. Kazem & Ali H. A. Al-Waeli & Kamaruzzaman Sopian & Mohammed A. Fayad & Wissam H. Alawee & Hayder A. Dhahad & Wan Nor Roslam Wan Isahak & Ahmed A. Al-Amiery, 2023. "Sand and Dust Storms’ Impact on the Efficiency of the Photovoltaic Modules Installed in Baghdad: A Review Study with an Empirical Investigation," Energies, MDPI, vol. 16(9), pages 1-25, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3938-:d:1141083
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3938/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3938/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Al Bakri, Homam & Abu Elhaija, Wejdan & Al Zyoud, Ali, 2021. "Solar photovoltaic panels performance improvement using active self-cleaning nanotechnology of SurfaShield G," Energy, Elsevier, vol. 223(C).
    2. Hadwan, Morshed & Alkholidi, Abdulsalam, 2018. "Assessment of factors influencing the sustainable performance of photovoltaic water pumping systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 307-318.
    3. Al-Waeli, Ali H.A. & Chaichan, Miqdam T. & Kazem, Hussein A. & Sopian, K. & Ibrahim, Adnan & Mat, Sohif & Ruslan, Mohd Hafidz, 2018. "Comparison study of indoor/outdoor experiments of a photovoltaic thermal PV/T system containing SiC nanofluid as a coolant," Energy, Elsevier, vol. 151(C), pages 33-44.
    4. Ramli, Makbul A.M. & Prasetyono, Eka & Wicaksana, Ragil W. & Windarko, Novie A. & Sedraoui, Khaled & Al-Turki, Yusuf A., 2016. "On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions," Renewable Energy, Elsevier, vol. 99(C), pages 836-844.
    5. Şevik, Seyfi & Aktaş, Ahmet, 2022. "Performance enhancing and improvement studies in a 600 kW solar photovoltaic (PV) power plant; manual and natural cleaning, rainwater harvesting and the snow load removal on the PV arrays," Renewable Energy, Elsevier, vol. 181(C), pages 490-503.
    6. Yao, Wanxiang & Han, Xiao & Huang, Yu & Zheng, Zhimiao & Wang, Yan & Wang, Xiao, 2022. "Analysis of the influencing factors of the dust on the surface of photovoltaic panels and its weakening law to solar radiation — A case study of Tianjin," Energy, Elsevier, vol. 256(C).
    7. Khaled M. Alawasa & Rashid S. AlAbri & Amer S. Al-Hinai & Mohammed H. Albadi & Abdullah H. Al-Badi, 2021. "Experimental Study on the Effect of Dust Deposition on a Car Park Photovoltaic System with Different Cleaning Cycles," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    8. Ramin Papi & Sara Attarchi & Ali Darvishi Boloorani & Najmeh Neysani Samany, 2022. "Characterization of Hydrologic Sand and Dust Storm Sources in the Middle East," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    9. Cai, Wei & Li, Xing & Maleki, Akbar & Pourfayaz, Fathollah & Rosen, Marc A. & Alhuyi Nazari, Mohammad & Bui, Dieu Tien, 2020. "Optimal sizing and location based on economic parameters for an off-grid application of a hybrid system with photovoltaic, battery and diesel technology," Energy, Elsevier, vol. 201(C).
    10. Thamer Alquthami & Karim Menoufi, 2019. "Soiling of Photovoltaic Modules: Comparing between Two Distinct Locations within the Framework of Developing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 11(17), pages 1-13, August.
    11. Quansah, David A. & Adaramola, Muyiwa S., 2019. "Assessment of early degradation and performance loss in five co-located solar photovoltaic module technologies installed in Ghana using performance ratio time-series regression," Renewable Energy, Elsevier, vol. 131(C), pages 900-910.
    12. Ullah, Asad & Amin, Amir & Haider, Turab & Saleem, Murtaza & Butt, Nauman Zafar, 2020. "Investigation of soiling effects, dust chemistry and optimum cleaning schedule for PV modules in Lahore, Pakistan," Renewable Energy, Elsevier, vol. 150(C), pages 456-468.
    13. Amr Zeedan & Abdulaziz Barakeh & Khaled Al-Fakhroo & Farid Touati & Antonio S. P. Gonzales, 2021. "Quantification of PV Power and Economic Losses Due to Soiling in Qatar," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    14. Mohammed Al-Housani & Yusuf Bicer & Muammer Koç, 2019. "Assessment of Various Dry Photovoltaic Cleaning Techniques and Frequencies on the Power Output of CdTe-Type Modules in Dusty Environments," Sustainability, MDPI, vol. 11(10), pages 1-18, May.
    15. Sarver, Travis & Al-Qaraghuli, Ali & Kazmerski, Lawrence L., 2013. "A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 698-733.
    16. Ramadan J. Mustafa & Mohamed R. Gomaa & Mujahed Al-Dhaifallah & Hegazy Rezk, 2020. "Environmental Impacts on the Performance of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 12(2), pages 1-17, January.
    17. Srinivasan Alwar & Devakirubakaran Samithas & Meenakshi Sundaram Boominathan & Praveen Kumar Balachandran & Lucian Mihet-Popa, 2022. "Performance Analysis of Thermal Image Processing-Based Photovoltaic Fault Detection and PV Array Reconfiguration—A Detailed Experimentation," Energies, MDPI, vol. 15(22), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernardo Gonçalves & João F. P. Fernandes & João Paulo N. Torres & Ricardo A. Marques Lameirinhas, 2023. "Experimental Investigation and Modelling of Sediments Effect on the Performance of Cadmium Telluride Photovoltaic Panels," Energies, MDPI, vol. 16(12), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aritra Ghosh, 2020. "Soiling Losses: A Barrier for India’s Energy Security Dependency from Photovoltaic Power," Challenges, MDPI, vol. 11(1), pages 1-22, May.
    2. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Yao, Wanxiang & Kong, Xiangru & Xu, Ai & Xu, Puyan & Wang, Yan & Gao, Weijun, 2023. "New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Chiteka, Kudzanayi & Arora, Rajesh & Sridhara, S.N. & Enweremadu, C.C., 2021. "Optimizing wind barrier and photovoltaic array configuration in soiling mitigation," Renewable Energy, Elsevier, vol. 163(C), pages 225-236.
    5. Mina Nezamisavojbolaghi & Erfan Davodian & Amal Bouich & Mouhaydine Tlemçani & Oumaima Mesbahi & Fernando M. Janeiro, 2023. "The Impact of Dust Deposition on PV Panels’ Efficiency and Mitigation Solutions: Review Article," Energies, MDPI, vol. 16(24), pages 1-19, December.
    6. Alkharusi, Tarik & Huang, Gan & Markides, Christos N., 2024. "Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance," Renewable Energy, Elsevier, vol. 220(C).
    7. Kaiss, El-Cheikh Amer & Hassan, Noha M., 2024. "Optimizing the cleaning frequency of solar photovoltaic (PV) systems using numerical analysis and empirical models," Renewable Energy, Elsevier, vol. 228(C).
    8. Enaganti, Prasanth K. & Bhattacharjee, Ankur & Ghosh, Aritra & Chanchangi, Yusuf N. & Chakraborty, Chanchal & Mallick, Tapas K. & Goel, Sanket, 2022. "Experimental investigations for dust build-up on low-iron glass exterior and its effects on the performance of solar PV systems," Energy, Elsevier, vol. 239(PC).
    9. Chiteka, Kudzanayi & Arora, Rajesh & Sridhara, S.N. & Enweremadu, C.C., 2021. "Influence of irradiance incidence angle and installation configuration on the deposition of dust and dust-shading of a photovoltaic array," Energy, Elsevier, vol. 216(C).
    10. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    11. Kumar Ganti, Praful & Naik, Hrushikesh & Kanungo Barada, Mohanty, 2022. "Environmental impact analysis and enhancement of factors affecting the photovoltaic (PV) energy utilization in mining industry by sparrow search optimization based gradient boosting decision tree appr," Energy, Elsevier, vol. 244(PA).
    12. Cherupurakal, Nizamudeen & Mozumder, Mohammad Sayem & Mourad, Abdel- Hamid I. & Lalwani, Shubra, 2021. "Recent advances in superhydrophobic polymers for antireflective self-cleaning solar panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Benjamin Oluwamuyiwa Olorunfemi & Omolola A. Ogbolumani & Nnamdi Nwulu, 2022. "Solar Panels Dirt Monitoring and Cleaning for Performance Improvement: A Systematic Review on Smart Systems," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
    14. Ndeto, Martin Paul & Wekesa, David Wafula & Njoka, Francis & Kinyua, Robert, 2023. "Aeolian dust distribution, elemental concentration, characteristics and its effects on the conversion efficiency of crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 208(C), pages 481-491.
    15. Adak, Deepanjana & Bhattacharyya, Raghunath & Barshilia, Harish C., 2022. "A state-of-the-art review on the multifunctional self-cleaning nanostructured coatings for PV panels, CSP mirrors and related solar devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    16. Chanchangi, Yusuf N. & Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2020. "Dust and PV Performance in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    17. Gowtham Vedulla & Anbazhagan Geetha & Ramalingam Senthil, 2022. "Review of Strategies to Mitigate Dust Deposition on Solar Photovoltaic Systems," Energies, MDPI, vol. 16(1), pages 1-28, December.
    18. Pankaj Borah & Leonardo Micheli & Nabin Sarmah, 2023. "Analysis of Soiling Loss in Photovoltaic Modules: A Review of the Impact of Atmospheric Parameters, Soil Properties, and Mitigation Approaches," Sustainability, MDPI, vol. 15(24), pages 1-26, December.
    19. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    20. Hassan Z. Al Garni, 2022. "The Impact of Soiling on PV Module Performance in Saudi Arabia," Energies, MDPI, vol. 15(21), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3938-:d:1141083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.