IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10920-d904065.html
   My bibliography  Save this article

Solar Panels Dirt Monitoring and Cleaning for Performance Improvement: A Systematic Review on Smart Systems

Author

Listed:
  • Benjamin Oluwamuyiwa Olorunfemi

    (Center for Cyber-Physical Food, Energy and Water Systems (CCP-FEWS), University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa)

  • Omolola A. Ogbolumani

    (Center for Cyber-Physical Food, Energy and Water Systems (CCP-FEWS), University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa)

  • Nnamdi Nwulu

    (Center for Cyber-Physical Food, Energy and Water Systems (CCP-FEWS), University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa)

Abstract

The advancement in technology to manage energy generation using solar panels has proved vital for increased reliability and reduced cost. Solar panels emit no pollution while producing electricity as a renewable energy source. However, the solar panel is adversely affected by dirt, a major environmental factor affecting energy production. The intensity of light falling on the solar panel is reduced when dirt accumulates on the surface. This, in turn, lowers the output of electrical energy generated by the solar panel. Since cleansing the solar panel is essential, constant monitoring and evaluation of these processes are necessary to optimize them. This emphasizes the importance of using smart systems to monitor dirt and clean solar panels to improve their performance. The paper tries to verify the existence and the degree of research interest in this topic and seeks to evaluate the impact of smart systems to detect dirt conditions and clean solar panels compared to autonomous and manual technology. Research on smart systems for addressing dirt accumulation on solar panels was conducted taking into account efficiency, accuracy, complexity, and reliability, initial and running cost. Overall, real-time monitoring and cleaning of the solar panel improved its output power with integrated smart systems. It helps users get real-time updates of the solar panel’s condition and control actions from distant locations. A critical limitation of this research is the insufficient empirical analysis of existing smart systems, which should be thoroughly examined to allow further generalization of theoretical findings.

Suggested Citation

  • Benjamin Oluwamuyiwa Olorunfemi & Omolola A. Ogbolumani & Nnamdi Nwulu, 2022. "Solar Panels Dirt Monitoring and Cleaning for Performance Improvement: A Systematic Review on Smart Systems," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10920-:d:904065
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10920/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10920/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Prasad, Abhnil Amtesh & Nishant, Nidhi & Kay, Merlinde, 2022. "Dust cycle and soiling issues affecting solar energy reductions in Australia using multiple datasets," Applied Energy, Elsevier, vol. 310(C).
    2. Ali Hasan Shah & Ahmed Hassan & Mohammad Shakeel Laghari & Abdulrahman Alraeesi, 2020. "The Influence of Cleaning Frequency of Photovoltaic Modules on Power Losses in the Desert Climate," Sustainability, MDPI, vol. 12(22), pages 1-15, November.
    3. Sánchez-Barroso, Gonzalo & González-Domínguez, Jaime & García-Sanz-Calcedo, Justo & Sanz, Joaquín García, 2021. "Markov chains estimation of the optimal periodicity for cleaning photovoltaic panels installed in the dehesa," Renewable Energy, Elsevier, vol. 179(C), pages 537-549.
    4. Amr Zeedan & Abdulaziz Barakeh & Khaled Al-Fakhroo & Farid Touati & Antonio S. P. Gonzales, 2021. "Quantification of PV Power and Economic Losses Due to Soiling in Qatar," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    5. Adinoyi, Muhammed J. & Said, Syed A.M., 2013. "Effect of dust accumulation on the power outputs of solar photovoltaic modules," Renewable Energy, Elsevier, vol. 60(C), pages 633-636.
    6. Mohammed Al-Housani & Yusuf Bicer & Muammer Koç, 2019. "Assessment of Various Dry Photovoltaic Cleaning Techniques and Frequencies on the Power Output of CdTe-Type Modules in Dusty Environments," Sustainability, MDPI, vol. 11(10), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiteka, Kudzanayi & Arora, Rajesh & Sridhara, S.N. & Enweremadu, C.C., 2021. "Optimizing wind barrier and photovoltaic array configuration in soiling mitigation," Renewable Energy, Elsevier, vol. 163(C), pages 225-236.
    2. Carmen Otilia Rusănescu & Marin Rusănescu & Irina Aura Istrate & Gabriel Alexandru Constantin & Mihaela Begea, 2023. "The Effect of Dust Deposition on the Performance of Photovoltaic Panels," Energies, MDPI, vol. 16(19), pages 1-20, September.
    3. Cherupurakal, Nizamudeen & Mozumder, Mohammad Sayem & Mourad, Abdel- Hamid I. & Lalwani, Shubra, 2021. "Recent advances in superhydrophobic polymers for antireflective self-cleaning solar panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Miqdam T. Chaichan & Hussein A. Kazem & Ali H. A. Al-Waeli & Kamaruzzaman Sopian & Mohammed A. Fayad & Wissam H. Alawee & Hayder A. Dhahad & Wan Nor Roslam Wan Isahak & Ahmed A. Al-Amiery, 2023. "Sand and Dust Storms’ Impact on the Efficiency of the Photovoltaic Modules Installed in Baghdad: A Review Study with an Empirical Investigation," Energies, MDPI, vol. 16(9), pages 1-25, May.
    5. Ali Hasan Shah & Ahmed Hassan & Mohammad Shakeel Laghari & Abdulrahman Alraeesi, 2020. "The Influence of Cleaning Frequency of Photovoltaic Modules on Power Losses in the Desert Climate," Sustainability, MDPI, vol. 12(22), pages 1-15, November.
    6. Guan, Yanling & Zhang, Hao & Xiao, Bin & Zhou, Zhi & Yan, Xuzhou, 2017. "In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 101(C), pages 1273-1284.
    7. Alkharusi, Tarik & Huang, Gan & Markides, Christos N., 2024. "Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance," Renewable Energy, Elsevier, vol. 220(C).
    8. Mingzhi Zhao & Rong Yu & Chun Chang & Daorina Bao & Aohan Mei & Yingjie Liu & Ningbo Wang, 2023. "Effect of Sand and Dust Shading on the Output Characteristics of Solar Photovoltaic Modules in Desertification Areas," Energies, MDPI, vol. 16(23), pages 1-17, December.
    9. Huang, Pengluan & Hu, Guoqiang & Zhao, Xiaodong & Lu, Luyi & Ding, Honggang & Li, Jianlan, 2022. "Effect of organics on the adhesion of dust to PV panel surfaces under condensation," Energy, Elsevier, vol. 261(PB).
    10. Chanchangi, Yusuf N. & Ghosh, Aritra & Micheli, Leonardo & Fernández, Eduardo F. & Sundaram, Senthilarasu & Mallick, Tapas K., 2022. "Soiling mapping through optical losses for Nigeria," Renewable Energy, Elsevier, vol. 197(C), pages 995-1008.
    11. Yao, Wanxiang & Kong, Xiangru & Xu, Ai & Xu, Puyan & Wang, Yan & Gao, Weijun, 2023. "New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    12. AlZahrani, Khaled S., 2023. "Experimental investigation of soiling impact on PV module performance in Yanbu Al Sinaiyah, Saudi Arabia," Renewable Energy, Elsevier, vol. 216(C).
    13. Erdenedavaa, Purevdalai & Akisawa, Atsushi & Adiyabat, Amarbayar & Otgonjanchiv, Erdenesuvd, 2019. "Observation and modeling of dust deposition on glass tube of evacuated solar thermal collectors in Mongolia," Renewable Energy, Elsevier, vol. 130(C), pages 613-621.
    14. Emran Aljdaeh & Innocent Kamwa & Waleed Hammad & Mohammed I. Abuashour & Tha’er Sweidan & Haris M. Khalid & S. M. Muyeen, 2021. "Performance Enhancement of Self-Cleaning Hydrophobic Nanocoated Photovoltaic Panels in a Dusty Environment," Energies, MDPI, vol. 14(20), pages 1-18, October.
    15. Gherboudj, Imen & Ghedira, Hosni, 2016. "Assessment of solar energy potential over the United Arab Emirates using remote sensing and weather forecast data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1210-1224.
    16. Ramli, Makbul A.M. & Prasetyono, Eka & Wicaksana, Ragil W. & Windarko, Novie A. & Sedraoui, Khaled & Al-Turki, Yusuf A., 2016. "On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions," Renewable Energy, Elsevier, vol. 99(C), pages 836-844.
    17. Tanesab, Julius & Parlevliet, David & Whale, Jonathan & Urmee, Tania, 2018. "Energy and economic losses caused by dust on residential photovoltaic (PV) systems deployed in different climate areas," Renewable Energy, Elsevier, vol. 120(C), pages 401-412.
    18. You, Siming & Lim, Yu Jie & Dai, Yanjun & Wang, Chi-Hwa, 2018. "On the temporal modelling of solar photovoltaic soiling: Energy and economic impacts in seven cities," Applied Energy, Elsevier, vol. 228(C), pages 1136-1146.
    19. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    20. Ramez Abdallah & Adel Juaidi & Salameh Abdel-Fattah & Mahmoud Qadi & Montaser Shadid & Aiman Albatayneh & Hüseyin Çamur & Amos García-Cruz & Francisco Manzano-Agugliaro, 2022. "The Effects of Soiling and Frequency of Optimal Cleaning of PV Panels in Palestine," Energies, MDPI, vol. 15(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10920-:d:904065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.