IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p8022-d1298547.html
   My bibliography  Save this article

The Impact of Dust Deposition on PV Panels’ Efficiency and Mitigation Solutions: Review Article

Author

Listed:
  • Mina Nezamisavojbolaghi

    (Instrumentation and Control Laboratory, Institute of Earth Science, 7000-671 Evora, Portugal
    Department of Mechatronics Engineering, University of Évora, 7000-671 Evora, Portugal)

  • Erfan Davodian

    (Instrumentation and Control Laboratory, Institute of Earth Science, 7000-671 Evora, Portugal
    Department of Mechatronics Engineering, University of Évora, 7000-671 Evora, Portugal
    Department of Mobility Design, Escola Superior de Artes e Design, ESAD College, 4460-268 Porto, Portugal)

  • Amal Bouich

    (Institut de Disseny i Fabricació, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain)

  • Mouhaydine Tlemçani

    (Instrumentation and Control Laboratory, Institute of Earth Science, 7000-671 Evora, Portugal
    Department of Mechatronics Engineering, University of Évora, 7000-671 Evora, Portugal)

  • Oumaima Mesbahi

    (Instrumentation and Control Laboratory, Institute of Earth Science, 7000-671 Evora, Portugal
    Department of Mechatronics Engineering, University of Évora, 7000-671 Evora, Portugal)

  • Fernando M. Janeiro

    (Instrumentation and Control Laboratory, Institute of Earth Science, 7000-671 Evora, Portugal
    Department of Mechatronics Engineering, University of Évora, 7000-671 Evora, Portugal
    Instituto de Telecomunicações, 1049-001 Lisbon, Portugal)

Abstract

Conversion efficiency, power production, and cost of PV panels’ energy are remarkably impacted by external factors including temperature, wind, humidity, dust aggregation, and induction characteristics of the PV system such as tilt angle, altitude, and orientation. One of the prominent elements affecting PV panel performance and capability is dust. Nonetheless, dust features including size, shape, type, etc. are geologically known. Several mitigation methods have been studied for the reduction of dust concentration on the exterior face of the PV modules. The outcomes have demonstrated that dust concentration and pollutants remarkably affect the PV panel energy production. This paper reviews the recently developed research on the outcomes of the dust effect on PV panels in different locations and meets the needs of future research on this subject. Moreover, different cleaning methods that could be advantageous for future researchers in opting for the most applicable technique for dust removal are reviewed.

Suggested Citation

  • Mina Nezamisavojbolaghi & Erfan Davodian & Amal Bouich & Mouhaydine Tlemçani & Oumaima Mesbahi & Fernando M. Janeiro, 2023. "The Impact of Dust Deposition on PV Panels’ Efficiency and Mitigation Solutions: Review Article," Energies, MDPI, vol. 16(24), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8022-:d:1298547
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/8022/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/8022/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Del Pero, Claudio & Aste, Niccolò & Leonforte, Fabrizio, 2021. "The effect of rain on photovoltaic systems," Renewable Energy, Elsevier, vol. 179(C), pages 1803-1814.
    2. Kaldellis, J.K. & Kokala, A., 2010. "Quantifying the decrease of the photovoltaic panels’ energy yield due to phenomena of natural air pollution disposal," Energy, Elsevier, vol. 35(12), pages 4862-4869.
    3. Sándor Szabó & Magda Moner-Girona & Ioannis Kougias & Rob Bailis & Katalin Bódis, 2016. "Identification of advantageous electricity generation options in sub-Saharan Africa integrating existing resources," Nature Energy, Nature, vol. 1(10), pages 1-8, October.
    4. Isaacs, Stewart & Kalashnikova, Olga & Garay, Michael J. & van Donkelaar, Aaron & Hammer, Melanie S. & Lee, Huikyo & Wood, Danielle, 2023. "Dust soiling effects on decentralized solar in West Africa," Applied Energy, Elsevier, vol. 340(C).
    5. Sahouane, Nordine & Ziane, Abderrezzaq & Dabou, Rachid & Neçaibia, Ammar & Rouabhia, Abdelkrim & Lachtar, Salah & Blal, Mohammed & Slimani, Abdeldjalil & Boudjamaa, Tidjar, 2023. "Technical and economic study of the sand and dust accumulation impact on the energy performance of photovoltaic system in Algerian Sahara," Renewable Energy, Elsevier, vol. 205(C), pages 142-155.
    6. Adinoyi, Muhammed J. & Said, Syed A.M., 2013. "Effect of dust accumulation on the power outputs of solar photovoltaic modules," Renewable Energy, Elsevier, vol. 60(C), pages 633-636.
    7. Long, Wen & Jiao, Jianjun & Liang, Ximing & Xu, Ming & Tang, Mingzhu & Cai, Shaohong, 2022. "Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm," Energy, Elsevier, vol. 249(C).
    8. Carmen Otilia Rusănescu & Marin Rusănescu & Irina Aura Istrate & Gabriel Alexandru Constantin & Mihaela Begea, 2023. "The Effect of Dust Deposition on the Performance of Photovoltaic Panels," Energies, MDPI, vol. 16(19), pages 1-20, September.
    9. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    10. Şevik, Seyfi & Aktaş, Ahmet, 2022. "Performance enhancing and improvement studies in a 600 kW solar photovoltaic (PV) power plant; manual and natural cleaning, rainwater harvesting and the snow load removal on the PV arrays," Renewable Energy, Elsevier, vol. 181(C), pages 490-503.
    11. Costa, Suellen C.S. & Diniz, Antonia Sonia A.C. & Kazmerski, Lawrence L., 2016. "Dust and soiling issues and impacts relating to solar energy systems: Literature review update for 2012–2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 33-61.
    12. Thamer Alquthami & Karim Menoufi, 2019. "Soiling of Photovoltaic Modules: Comparing between Two Distinct Locations within the Framework of Developing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 11(17), pages 1-13, August.
    13. Malik, A.Q. & Damit, Salmi Jan Bin Haji, 2003. "Outdoor testing of single crystal silicon solar cells," Renewable Energy, Elsevier, vol. 28(9), pages 1433-1445.
    14. Klugmann-Radziemska, Ewa, 2015. "Degradation of electrical performance of a crystalline photovoltaic module due to dust deposition in northern Poland," Renewable Energy, Elsevier, vol. 78(C), pages 418-426.
    15. Sarver, Travis & Al-Qaraghuli, Ali & Kazmerski, Lawrence L., 2013. "A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 698-733.
    16. Hussam Almukhtar & Tek Tjing Lie & Wisam A. M. Al-Shohani & Timothy Anderson & Zaid Al-Tameemi, 2023. "Comprehensive Review of Dust Properties and Their Influence on Photovoltaic Systems: Electrical, Optical, Thermal Models and Experimentation Techniques," Energies, MDPI, vol. 16(8), pages 1-31, April.
    17. Hegazy, Adel A, 2001. "Effect of dust accumulation on solar transmittance through glass covers of plate-type collectors," Renewable Energy, Elsevier, vol. 22(4), pages 525-540.
    18. Winkelmann, Ulf & Kämper, Christoph & Höffer, Rüdiger & Forman, Patrick & Ahrens, Mark Alexander & Mark, Peter, 2020. "Wind actions on large-aperture parabolic trough solar collectors: Wind tunnel tests and structural analysis," Renewable Energy, Elsevier, vol. 146(C), pages 2390-2407.
    19. Israa Amer Dahham & Muhammad Ammirul Atiqi Mohd Zainuri & Ali Abdulabbas Abdullah & Mohd Faizal Fauzan, 2023. "Modeling the Effect of Dust and Wind Speed on Solar Panel Performance in Iraq," Energies, MDPI, vol. 16(17), pages 1-18, September.
    20. El-Shobokshy, Mohammad S. & Hussein, Fahmy M., 1993. "Degradation of photovoltaic cell performance due to dust deposition on to its surface," Renewable Energy, Elsevier, vol. 3(6), pages 585-590.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pankaj Borah & Leonardo Micheli & Nabin Sarmah, 2023. "Analysis of Soiling Loss in Photovoltaic Modules: A Review of the Impact of Atmospheric Parameters, Soil Properties, and Mitigation Approaches," Sustainability, MDPI, vol. 15(24), pages 1-26, December.
    2. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    4. Isaacs, Stewart & Kalashnikova, Olga & Garay, Michael J. & van Donkelaar, Aaron & Hammer, Melanie S. & Lee, Huikyo & Wood, Danielle, 2023. "Dust soiling effects on decentralized solar in West Africa," Applied Energy, Elsevier, vol. 340(C).
    5. Chanchangi, Yusuf N. & Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2020. "Dust and PV Performance in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    6. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    7. Yao, Wanxiang & Kong, Xiangru & Xu, Ai & Xu, Puyan & Wang, Yan & Gao, Weijun, 2023. "New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    8. Borislav Stankov & Angel Terziev & Momchil Vassilev & Martin Ivanov, 2024. "Influence of Wind and Rainfall on the Performance of a Photovoltaic Module in a Dusty Environment," Energies, MDPI, vol. 17(14), pages 1-29, July.
    9. Carmen Otilia Rusănescu & Marin Rusănescu & Irina Aura Istrate & Gabriel Alexandru Constantin & Mihaela Begea, 2023. "The Effect of Dust Deposition on the Performance of Photovoltaic Panels," Energies, MDPI, vol. 16(19), pages 1-20, September.
    10. Raillani, Benyounes & Salhi, Mourad & Chaatouf, Dounia & Bria, Abir & Amraqui, Samir & Mezrhab, Ahmed, 2023. "A new proposed method to mitigate the soiling rate of a photovoltaic array using first-row height," Applied Energy, Elsevier, vol. 331(C).
    11. Hammad, Bashar & Al–Abed, Mohammad & Al–Ghandoor, Ahmed & Al–Sardeah, Ali & Al–Bashir, Adnan, 2018. "Modeling and analysis of dust and temperature effects on photovoltaic systems’ performance and optimal cleaning frequency: Jordan case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2218-2234.
    12. Darwish, Zeki Ahmed & Kazem, Hussein A. & Sopian, K. & Al-Goul, M.A. & Alawadhi, Hussain, 2015. "Effect of dust pollutant type on photovoltaic performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 735-744.
    13. Ali Hasan Shah & Ahmed Hassan & Mohammad Shakeel Laghari & Abdulrahman Alraeesi, 2020. "The Influence of Cleaning Frequency of Photovoltaic Modules on Power Losses in the Desert Climate," Sustainability, MDPI, vol. 12(22), pages 1-15, November.
    14. Guan, Yanling & Zhang, Hao & Xiao, Bin & Zhou, Zhi & Yan, Xuzhou, 2017. "In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 101(C), pages 1273-1284.
    15. Figgis, Benjamin & Ennaoui, Ahmed & Ahzi, Said & Rémond, Yves, 2017. "Review of PV soiling particle mechanics in desert environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 872-881.
    16. Erdenedavaa, Purevdalai & Akisawa, Atsushi & Adiyabat, Amarbayar & Otgonjanchiv, Erdenesuvd, 2019. "Observation and modeling of dust deposition on glass tube of evacuated solar thermal collectors in Mongolia," Renewable Energy, Elsevier, vol. 130(C), pages 613-621.
    17. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    18. Tanesab, Julius & Parlevliet, David & Whale, Jonathan & Urmee, Tania, 2018. "Energy and economic losses caused by dust on residential photovoltaic (PV) systems deployed in different climate areas," Renewable Energy, Elsevier, vol. 120(C), pages 401-412.
    19. Chiteka, Kudzanayi & Arora, Rajesh & Sridhara, S.N. & Enweremadu, C.C., 2021. "Optimizing wind barrier and photovoltaic array configuration in soiling mitigation," Renewable Energy, Elsevier, vol. 163(C), pages 225-236.
    20. Cherupurakal, Nizamudeen & Mozumder, Mohammad Sayem & Mourad, Abdel- Hamid I. & Lalwani, Shubra, 2021. "Recent advances in superhydrophobic polymers for antireflective self-cleaning solar panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8022-:d:1298547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.