IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v208y2023icp481-491.html
   My bibliography  Save this article

Aeolian dust distribution, elemental concentration, characteristics and its effects on the conversion efficiency of crystalline silicon solar cells

Author

Listed:
  • Ndeto, Martin Paul
  • Wekesa, David Wafula
  • Njoka, Francis
  • Kinyua, Robert

Abstract

Exposure of PV modules to ambient environmental conditions like dust deposits, has some deleterious effects on peak power (Pmax) and overall conversion efficiency (η). This study investigates the effect of module height, tilt, and orientation on the rate of dust deposition on the surfaces of PV modules. Consequently, the effect of different dust categories on Pmax and η are investigated. North facing module surfaces are observed to exhibit higher deposition rates in southerly winds. A significant decrease in conversion efficiency of 1.30%, 1.74%, 4.05%, 2.74% and 1.38% after a fortnight are observed in modules installed in five randomly selected study sites. A higher decrease in efficiency on average after a fortnight is observed in sites having traces of anthropogenic particles on dust samples collected from the PV surfaces with minimal effects observed in sites having biogenic and geogenic particles. Abundance of anthropogenic dust particles coupled with mild tilt and leeward orientation led to a higher maximum power and efficiency degradation rate.

Suggested Citation

  • Ndeto, Martin Paul & Wekesa, David Wafula & Njoka, Francis & Kinyua, Robert, 2023. "Aeolian dust distribution, elemental concentration, characteristics and its effects on the conversion efficiency of crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 208(C), pages 481-491.
  • Handle: RePEc:eee:renene:v:208:y:2023:i:c:p:481-491
    DOI: 10.1016/j.renene.2023.03.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123003609
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.03.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tamer Khatib & Wilfried Elmenreich & Azah Mohamed, 2017. "Simplified I-V Characteristic Tester for Photovoltaic Modules Using a DC-DC Boost Converter," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    2. Hachicha, Ahmed Amine & Al-Sawafta, Israa & Said, Zafar, 2019. "Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions," Renewable Energy, Elsevier, vol. 141(C), pages 287-297.
    3. Lu, Hao & Zhao, Wenjun, 2018. "Effects of particle sizes and tilt angles on dust deposition characteristics of a ground-mounted solar photovoltaic system," Applied Energy, Elsevier, vol. 220(C), pages 514-526.
    4. Amr Zeedan & Abdulaziz Barakeh & Khaled Al-Fakhroo & Farid Touati & Antonio S. P. Gonzales, 2021. "Quantification of PV Power and Economic Losses Due to Soiling in Qatar," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    5. Hao Lu & Li-zhi Zhang, 2019. "Particle Deposition Characteristics and Efficiency in Duct Air Flow over a Backward-Facing Step: Analysis of Influencing Factors," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    6. Maryon Eliza Matius & Mohd Azlan Ismail & Yan Yan Farm & Adriana Erica Amaludin & Mohd Adzrie Radzali & Ahmad Fazlizan & Wan Khairul Muzammil, 2021. "On the Optimal Tilt Angle and Orientation of an On-Site Solar Photovoltaic Energy Generation System for Sabah’s Rural Electrification," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
    7. Ramadan J. Mustafa & Mohamed R. Gomaa & Mujahed Al-Dhaifallah & Hegazy Rezk, 2020. "Environmental Impacts on the Performance of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 12(2), pages 1-17, January.
    8. Mani, Monto & Pillai, Rohit, 2010. "Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3124-3131, December.
    9. Ndeto, Martin Paul & Wekesa, David Wafula & Kinyua, Robert & Njoka, Francis, 2020. "Investigation into the effects of the earth’s magnetic field on the conversion efficiency of solar cells," Renewable Energy, Elsevier, vol. 159(C), pages 184-194.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingzhi Zhao & Rong Yu & Chun Chang & Daorina Bao & Aohan Mei & Yingjie Liu & Ningbo Wang, 2023. "Effect of Sand and Dust Shading on the Output Characteristics of Solar Photovoltaic Modules in Desertification Areas," Energies, MDPI, vol. 16(23), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gowtham Vedulla & Anbazhagan Geetha & Ramalingam Senthil, 2022. "Review of Strategies to Mitigate Dust Deposition on Solar Photovoltaic Systems," Energies, MDPI, vol. 16(1), pages 1-28, December.
    2. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    3. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Khaled M. Alawasa & Rashid S. AlAbri & Amer S. Al-Hinai & Mohammed H. Albadi & Abdullah H. Al-Badi, 2021. "Experimental Study on the Effect of Dust Deposition on a Car Park Photovoltaic System with Different Cleaning Cycles," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    5. Carmen Otilia Rusănescu & Marin Rusănescu & Irina Aura Istrate & Gabriel Alexandru Constantin & Mihaela Begea, 2023. "The Effect of Dust Deposition on the Performance of Photovoltaic Panels," Energies, MDPI, vol. 16(19), pages 1-20, September.
    6. Miqdam T. Chaichan & Hussein A. Kazem & Ali H. A. Al-Waeli & Kamaruzzaman Sopian & Mohammed A. Fayad & Wissam H. Alawee & Hayder A. Dhahad & Wan Nor Roslam Wan Isahak & Ahmed A. Al-Amiery, 2023. "Sand and Dust Storms’ Impact on the Efficiency of the Photovoltaic Modules Installed in Baghdad: A Review Study with an Empirical Investigation," Energies, MDPI, vol. 16(9), pages 1-25, May.
    7. Umar, Shayan & Waqas, Adeel & Tanveer, Waqas & Shahzad, Nadia & Janjua, Abdul Kashif & Dehghan, Maziar & Qureshi, Muhammad Salik & Shakir, Sehar, 2023. "A building integrated solar PV surface-cleaning setup to optimize the electricity output of PV modules in a polluted atmosphere," Renewable Energy, Elsevier, vol. 216(C).
    8. Zhao, Weiping & Lv, Yukun & Zhou, Qingwen & Yan, Weiping, 2021. "Investigation on particle deposition criterion and dust accumulation impact on solar PV module performance," Energy, Elsevier, vol. 233(C).
    9. Tuhibur Rahman & Ahmed Al Mansur & Molla Shahadat Hossain Lipu & Md. Siddikur Rahman & Ratil H. Ashique & Mohamad Abou Houran & Rajvikram Madurai Elavarasan & Eklas Hossain, 2023. "Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management," Energies, MDPI, vol. 16(9), pages 1-30, April.
    10. Chanchangi, Yusuf N. & Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2020. "Dust and PV Performance in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    11. Pan, Anjian & Lu, Hao & Zhang, Li-Zhi, 2019. "Experimental investigation of dust deposition reduction on solar cell covering glass by different self-cleaning coatings," Energy, Elsevier, vol. 181(C), pages 645-653.
    12. Mohammed Al-Housani & Yusuf Bicer & Muammer Koç, 2019. "Assessment of Various Dry Photovoltaic Cleaning Techniques and Frequencies on the Power Output of CdTe-Type Modules in Dusty Environments," Sustainability, MDPI, vol. 11(10), pages 1-18, May.
    13. Ali Hasan Shah & Ahmed Hassan & Mohammad Shakeel Laghari & Abdulrahman Alraeesi, 2020. "The Influence of Cleaning Frequency of Photovoltaic Modules on Power Losses in the Desert Climate," Sustainability, MDPI, vol. 12(22), pages 1-15, November.
    14. Aritra Ghosh, 2020. "Soiling Losses: A Barrier for India’s Energy Security Dependency from Photovoltaic Power," Challenges, MDPI, vol. 11(1), pages 1-22, May.
    15. Nick Middleton & Utchang Kang, 2017. "Sand and Dust Storms: Impact Mitigation," Sustainability, MDPI, vol. 9(6), pages 1-22, June.
    16. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Saidan, Motasem & Albaali, Abdul Ghani & Alasis, Emil & Kaldellis, John K., 2016. "Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment," Renewable Energy, Elsevier, vol. 92(C), pages 499-505.
    18. Mostafa. F. Shaaban & Amal Alarif & Mohamed Mokhtar & Usman Tariq & Ahmed H. Osman & A. R. Al-Ali, 2020. "A New Data-Based Dust Estimation Unit for PV Panels," Energies, MDPI, vol. 13(14), pages 1-17, July.
    19. Ilse, Klemens K. & Figgis, Benjamin W. & Naumann, Volker & Hagendorf, Christian & Bagdahn, Jörg, 2018. "Fundamentals of soiling processes on photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 239-254.
    20. Huang, Pengluan & Hu, Guoqiang & Zhao, Xiaodong & Lu, Luyi & Ding, Honggang & Li, Jianlan, 2022. "Effect of organics on the adhesion of dust to PV panel surfaces under condensation," Energy, Elsevier, vol. 261(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:208:y:2023:i:c:p:481-491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.