IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipcs0360544221024610.html
   My bibliography  Save this article

Experimental investigations for dust build-up on low-iron glass exterior and its effects on the performance of solar PV systems

Author

Listed:
  • Enaganti, Prasanth K.
  • Bhattacharjee, Ankur
  • Ghosh, Aritra
  • Chanchangi, Yusuf N.
  • Chakraborty, Chanchal
  • Mallick, Tapas K.
  • Goel, Sanket

Abstract

The performance of solar photovoltaic (SPV) power plants is adversely affected by soiling losses caused by natural dust deposition on the module surface. The size and density of dust particles vary depending on the location. Thus, it is essential to investigate the impact of dust collection on SPV module performance. This work investigates the effect of dust build-up on the low-iron glass surface and the performance of SPV modules. To analyze the characteristics of these dust particles, low-iron glass samples have been chosen, which resemble a front glass surface of the SPV module. To study the holistic pattern of the natural dust accumulation of a particular area, low-iron glass samples have been placed with three different positions like vertical, horizontal, and local tilt angle for Building Integrated Photovoltaic Systems (BIPV) and rooftop PV power plant applications. The mineralogical study of dust particles provides insight in determining the transmittance loss from the glass surface of solar PV modules due to the local soiling loss. Furthermore, the electrical power output of the SPV modules has been monitored at various levels of dust accumulation. Moreover, these findings indicate that natural dust deposition at selected site locations significantly reduces energy generation from PV modules.

Suggested Citation

  • Enaganti, Prasanth K. & Bhattacharjee, Ankur & Ghosh, Aritra & Chanchangi, Yusuf N. & Chakraborty, Chanchal & Mallick, Tapas K. & Goel, Sanket, 2022. "Experimental investigations for dust build-up on low-iron glass exterior and its effects on the performance of solar PV systems," Energy, Elsevier, vol. 239(PC).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221024610
    DOI: 10.1016/j.energy.2021.122213
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221024610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gupta, Dipti & Ghersi, Frédéric & Vishwanathan, Saritha S. & Garg, Amit, 2019. "Achieving sustainable development in India along low carbon pathways: Macroeconomic assessment," World Development, Elsevier, vol. 123(C), pages 1-1.
    2. Aritra Ghosh, 2020. "Soiling Losses: A Barrier for India’s Energy Security Dependency from Photovoltaic Power," Challenges, MDPI, vol. 11(1), pages 1-22, May.
    3. Conceição, Ricardo & Vázquez, Iñigo & Fialho, Luis & García, Daniel, 2020. "Soiling and rainfall effect on PV technology in rural Southern Europe," Renewable Energy, Elsevier, vol. 156(C), pages 743-747.
    4. Hairat, Manish Kumar & Ghosh, Sajal, 2017. "100GW solar power in India by 2022 – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1041-1050.
    5. Chanchangi, Yusuf N. & Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2020. "Dust and PV Performance in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    6. Ramli, Makbul A.M. & Prasetyono, Eka & Wicaksana, Ragil W. & Windarko, Novie A. & Sedraoui, Khaled & Al-Turki, Yusuf A., 2016. "On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions," Renewable Energy, Elsevier, vol. 99(C), pages 836-844.
    7. Chen, Jinxin & Pan, Guobing & Ouyang, Jing & Ma, Jin & Fu, Lei & Zhang, Libin, 2020. "Study on impacts of dust accumulation and rainfall on PV power reduction in East China," Energy, Elsevier, vol. 194(C).
    8. Ullah, Asad & Imran, Hassan & Maqsood, Zaki & Butt, Nauman Zafar, 2019. "Investigation of optimal tilt angles and effects of soiling on PV energy production in Pakistan," Renewable Energy, Elsevier, vol. 139(C), pages 830-843.
    9. Costa, Suellen C.S. & Diniz, Antonia Sonia A.C. & Kazmerski, Lawrence L., 2018. "Solar energy dust and soiling R&D progress: Literature review update for 2016," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2504-2536.
    10. Behuria, Pritish, 2020. "The politics of late late development in renewable energy sectors: Dependency and contradictory tensions in India’s National Solar Mission," World Development, Elsevier, vol. 126(C).
    11. Lu, Hao & Zhao, Wenjun, 2018. "Effects of particle sizes and tilt angles on dust deposition characteristics of a ground-mounted solar photovoltaic system," Applied Energy, Elsevier, vol. 220(C), pages 514-526.
    12. Chiteka, Kudzanayi & Arora, Rajesh & Sridhara, S.N. & Enweremadu, C.C., 2021. "Influence of irradiance incidence angle and installation configuration on the deposition of dust and dust-shading of a photovoltaic array," Energy, Elsevier, vol. 216(C).
    13. Sarver, Travis & Al-Qaraghuli, Ali & Kazmerski, Lawrence L., 2013. "A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 698-733.
    14. Pan, Anjian & Lu, Hao & Zhang, Li-Zhi, 2019. "Experimental investigation of dust deposition reduction on solar cell covering glass by different self-cleaning coatings," Energy, Elsevier, vol. 181(C), pages 645-653.
    15. El-Shobokshy, Mohammad S. & Hussein, Fahmy M., 1993. "Degradation of photovoltaic cell performance due to dust deposition on to its surface," Renewable Energy, Elsevier, vol. 3(6), pages 585-590.
    16. Laarabi, Bouchra & El Baqqal, Youssef & Dahrouch, Abdelouahed & Barhdadi, Abdelfettah, 2020. "Deep analysis of soiling effect on glass transmittance of PV modules in seven sites in Morocco," Energy, Elsevier, vol. 213(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Yiming & Liu, Mengmeng & Li, Wei & Lian, Jijian & Yao, Ye & Gao, Xifeng & Yu, Lina & Wang, Ting & Li, Yichu & Yin, Jilong, 2024. "An exploratory framework to identify dust on photovoltaic panels in offshore floating solar power stations," Energy, Elsevier, vol. 307(C).
    2. Alkharusi, Tarik & Huang, Gan & Markides, Christos N., 2024. "Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance," Renewable Energy, Elsevier, vol. 220(C).
    3. Chenyang Wang & Jialin Guo & Jingyu Li & Xiaomei Zeng & Vasiliy Pelenovich & Jun Zhang & Bing Yang & Xianbin Wang & Yu Du & Yikun Lei & Naibing Lu, 2023. "Microstructure of Surface Pollutants and Brush-Based Dry Cleaning of a Trough Concentrating Solar Power Station," Energies, MDPI, vol. 16(7), pages 1-15, April.
    4. Qaisieh, Alaa & Abu-Nabah, Bassam A. & Hamdan, Mohammad O. & Alami, Abdul Hai & Khanfar, Layla & Zaki, Laila, 2023. "Optical characterization of accumulated dust particles and the sustainability of transmitted solar irradiance to photovoltaic cells," Renewable Energy, Elsevier, vol. 219(P1).
    5. Tang, Wuqin & Yang, Qiang & Dai, Zhou & Yan, Wenjun, 2024. "Module defect detection and diagnosis for intelligent maintenance of solar photovoltaic plants: Techniques, systems and perspectives," Energy, Elsevier, vol. 297(C).
    6. Fan, Siyuan & Wang, Xiao & Wang, Zun & Sun, Bo & Zhang, Zhenhai & Cao, Shengxian & Zhao, Bo & Wang, Yu, 2022. "A novel image enhancement algorithm to determine the dust level on photovoltaic (PV) panels," Renewable Energy, Elsevier, vol. 201(P1), pages 172-180.
    7. Laura Essak & Aritra Ghosh, 2022. "Floating Photovoltaics: A Review," Clean Technol., MDPI, vol. 4(3), pages 1-18, August.
    8. Fan, Siyuan & Wang, Xiao & Cao, Shengxian & Wang, Yu & Zhang, Yanhui & Liu, Bingzheng, 2022. "A novel model to determine the relationship between dust concentration and energy conversion efficiency of photovoltaic (PV) panels," Energy, Elsevier, vol. 252(C).
    9. Warsama, Aziza Idriss & Selimli, Selcuk, 2024. "Effect of dust deposition density and particle size on the energetic and exergetic performance of photovoltaic modules: An experimental study," Renewable Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aritra Ghosh, 2020. "Soiling Losses: A Barrier for India’s Energy Security Dependency from Photovoltaic Power," Challenges, MDPI, vol. 11(1), pages 1-22, May.
    2. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Alkharusi, Tarik & Huang, Gan & Markides, Christos N., 2024. "Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance," Renewable Energy, Elsevier, vol. 220(C).
    4. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    5. Yao, Wanxiang & Kong, Xiangru & Xu, Ai & Xu, Puyan & Wang, Yan & Gao, Weijun, 2023. "New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    6. Yao, Wanxiang & Han, Xiao & Huang, Yu & Zheng, Zhimiao & Wang, Yan & Wang, Xiao, 2022. "Analysis of the influencing factors of the dust on the surface of photovoltaic panels and its weakening law to solar radiation — A case study of Tianjin," Energy, Elsevier, vol. 256(C).
    7. Fan, Siyuan & Wang, Yu & Cao, Shengxian & Sun, Tianyi & Liu, Peng, 2021. "A novel method for analyzing the effect of dust accumulation on energy efficiency loss in photovoltaic (PV) system," Energy, Elsevier, vol. 234(C).
    8. Zhao, Weiping & Lv, Yukun & Zhou, Qingwen & Yan, Weiping, 2021. "Investigation on particle deposition criterion and dust accumulation impact on solar PV module performance," Energy, Elsevier, vol. 233(C).
    9. Gowtham Vedulla & Anbazhagan Geetha & Ramalingam Senthil, 2022. "Review of Strategies to Mitigate Dust Deposition on Solar Photovoltaic Systems," Energies, MDPI, vol. 16(1), pages 1-28, December.
    10. Md Saif Hassan Onim & Zubayar Mahatab Md Sakif & Adil Ahnaf & Ahsan Kabir & Abul Kalam Azad & Amanullah Maung Than Oo & Rafina Afreen & Sumaita Tanjim Hridy & Mahtab Hossain & Taskeed Jabid & Md Sawka, 2022. "SolNet: A Convolutional Neural Network for Detecting Dust on Solar Panels," Energies, MDPI, vol. 16(1), pages 1-19, December.
    11. He, Beihua & Lu, Hao & Zheng, Chuanxiao & Wang, Yanlin, 2023. "Characteristics and cleaning methods of dust deposition on solar photovoltaic modules-A review," Energy, Elsevier, vol. 263(PE).
    12. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    13. Chiteka, Kudzanayi & Arora, Rajesh & Sridhara, S.N. & Enweremadu, C.C., 2021. "Optimizing wind barrier and photovoltaic array configuration in soiling mitigation," Renewable Energy, Elsevier, vol. 163(C), pages 225-236.
    14. Umar, Shayan & Waqas, Adeel & Tanveer, Waqas & Shahzad, Nadia & Janjua, Abdul Kashif & Dehghan, Maziar & Qureshi, Muhammad Salik & Shakir, Sehar, 2023. "A building integrated solar PV surface-cleaning setup to optimize the electricity output of PV modules in a polluted atmosphere," Renewable Energy, Elsevier, vol. 216(C).
    15. Huang, Wenfeng & Zhou, Kun & Sun, Ke & He, Zhu, 2019. "Effects of wind flow structure, particle flow and deposition pattern on photovoltaic energy harvest around a block," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Adak, Deepanjana & Bhattacharyya, Raghunath & Barshilia, Harish C., 2022. "A state-of-the-art review on the multifunctional self-cleaning nanostructured coatings for PV panels, CSP mirrors and related solar devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    17. Chanchangi, Yusuf N. & Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2020. "Dust and PV Performance in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    18. Pan, Anjian & Lu, Hao & Zhang, Li-Zhi, 2019. "Experimental investigation of dust deposition reduction on solar cell covering glass by different self-cleaning coatings," Energy, Elsevier, vol. 181(C), pages 645-653.
    19. Yan, Suying & Zhao, Sitong & Ma, Xiaodong & Ming, Tingzhen & Wu, Ze & Zhao, Xiaoyan & Ma, Rui, 2020. "Thermoelectric and exergy output performance of a Fresnel-based HCPV/T at different dust densities," Renewable Energy, Elsevier, vol. 159(C), pages 801-811.
    20. Yao, Wanxiang & Xu, Ai & Kong, Xiangru & Wang, Yan & Li, Xianli & Gao, Weijun, 2024. "Analysis of dust deposition law at the micro level and its impact on the annual performance of photovoltaic modules," Energy, Elsevier, vol. 306(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221024610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.