IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4777-d1173567.html
   My bibliography  Save this article

Experimental Investigation and Modelling of Sediments Effect on the Performance of Cadmium Telluride Photovoltaic Panels

Author

Listed:
  • Bernardo Gonçalves

    (Department of Electrical and Computer Engineering, Instituto Superior Técnico, 1049-001 Lisbon, Portugal)

  • João F. P. Fernandes

    (Department of Electrical and Computer Engineering, Instituto Superior Técnico, 1049-001 Lisbon, Portugal
    IDMEC-Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal)

  • João Paulo N. Torres

    (Instituto de Telecomunicações, 1049-001 Lisbon, Portugal
    Academia Militar/CINAMIL, Av. Conde Castro Guimarães, 2720-113 Amadora, Portugal)

  • Ricardo A. Marques Lameirinhas

    (Department of Electrical and Computer Engineering, Instituto Superior Técnico, 1049-001 Lisbon, Portugal
    Instituto de Telecomunicações, 1049-001 Lisbon, Portugal)

Abstract

Of the different renewable sources of energy, photovoltaic energy has one of the highest potentials. In recent decades, several technological and research advances have contributed to the consolidation of its potential. One current photovoltaic energy research topic is the analysis of the impact of sediments on the panels’ performance. The development of models to predict the performance of panels in the presence of sediments may allow for better decision-making when considering maintenance operations. This work contributed to the investigation of the influence of sand on the production of photovoltaic energy in cadmium telluride (CdTe) panels. Six panels of this type with different colors and transparencies were experimentally tested with and without the presence of sand. The impact of the sand on the cells’ performance was evaluated by analyzing the change in the 1M5P model’s parameters and in the power, efficiency, and fill factors. The experimental results show different negative impacts on the output power of the CdTe panels, from −14% in the orange panel to −36% in the green panel. Based on this study, the development of a model capable of predicting the effect of the sand on these panels was introduced. The developed model was validated experimentally, with a maximum deviation of 4.6%. These results can provide support for the decision-making around maintenance activities and for the development of new techniques to avoid sediment deposition on CdTe panels.

Suggested Citation

  • Bernardo Gonçalves & João F. P. Fernandes & João Paulo N. Torres & Ricardo A. Marques Lameirinhas, 2023. "Experimental Investigation and Modelling of Sediments Effect on the Performance of Cadmium Telluride Photovoltaic Panels," Energies, MDPI, vol. 16(12), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4777-:d:1173567
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4777/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4777/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tiago Alves & João Paulo N. Torres & Ricardo A. Marques Lameirinhas & Carlos A. F. Fernandes, 2021. "Different Techniques to Mitigate Partial Shading in Photovoltaic Panels," Energies, MDPI, vol. 14(13), pages 1-25, June.
    2. Fan, Siyuan & Wang, Yu & Cao, Shengxian & Sun, Tianyi & Liu, Peng, 2021. "A novel method for analyzing the effect of dust accumulation on energy efficiency loss in photovoltaic (PV) system," Energy, Elsevier, vol. 234(C).
    3. He, Beihua & Lu, Hao & Zheng, Chuanxiao & Wang, Yanlin, 2023. "Characteristics and cleaning methods of dust deposition on solar photovoltaic modules-A review," Energy, Elsevier, vol. 263(PE).
    4. Ricardo A. Marques Lameirinhas & João Paulo N. Torres & João P. de Melo Cunha, 2022. "A Photovoltaic Technology Review: History, Fundamentals and Applications," Energies, MDPI, vol. 15(5), pages 1-44, March.
    5. Miqdam T. Chaichan & Hussein A. Kazem & Ali H. A. Al-Waeli & Kamaruzzaman Sopian & Mohammed A. Fayad & Wissam H. Alawee & Hayder A. Dhahad & Wan Nor Roslam Wan Isahak & Ahmed A. Al-Amiery, 2023. "Sand and Dust Storms’ Impact on the Efficiency of the Photovoltaic Modules Installed in Baghdad: A Review Study with an Empirical Investigation," Energies, MDPI, vol. 16(9), pages 1-25, May.
    6. Hussam Almukhtar & Tek Tjing Lie & Wisam A. M. Al-Shohani & Timothy Anderson & Zaid Al-Tameemi, 2023. "Comprehensive Review of Dust Properties and Their Influence on Photovoltaic Systems: Electrical, Optical, Thermal Models and Experimentation Techniques," Energies, MDPI, vol. 16(8), pages 1-31, April.
    7. Rui Castro & Miguel Silva, 2021. "Experimental and Theoretical Validation of One Diode and Three Parameters–Based PV Models," Energies, MDPI, vol. 14(8), pages 1-25, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João Paulo N. Torres & Ricardo A. Marques Lameirinhas & Catarina Pinho Correia Valério Bernardo & Sofia Lima Martins & Pedro Mendonça dos Santos & Helena Isabel Veiga & Maria João Marques Martins & Pa, 2023. "Analysis of Different Third-Generation Solar Cells Using the Discrete Electrical Model d1MxP," Energies, MDPI, vol. 16(7), pages 1-12, April.
    2. João Paulo N. Torres & Ricardo A. Marques Lameirinhas & Catarina P. Correia V. Bernardo & Helena Isabel Veiga & Pedro Mendonça dos Santos, 2023. "A Discrete Electrical Model for Photovoltaic Solar Cells—d1MxP," Energies, MDPI, vol. 16(4), pages 1-14, February.
    3. Ricardo A. Marques Lameirinhas & João Paulo N. Torres & João P. de Melo Cunha, 2022. "A Photovoltaic Technology Review: History, Fundamentals and Applications," Energies, MDPI, vol. 15(5), pages 1-44, March.
    4. Cao, Yan & Dhahad, Hayder A. & Alsharif, Sameer & Sharma, Kamal & El.Shafy, Asem Saleh & Farhang, Babak & Mohammed, Adil Hussein, 2022. "Multi-objective optimizations and exergoeconomic analyses of a high-efficient bi-evaporator multigeneration system with freshwater unit," Renewable Energy, Elsevier, vol. 191(C), pages 699-714.
    5. Andrzej Ożadowicz & Gabriela Walczyk, 2023. "Energy Performance and Control Strategy for Dynamic Façade with Perovskite PV Panels—Technical Analysis and Case Study," Energies, MDPI, vol. 16(9), pages 1-23, April.
    6. Fan, Siyuan & Wang, Yu & Cao, Shengxian & Zhao, Bo & Sun, Tianyi & Liu, Peng, 2022. "A deep residual neural network identification method for uneven dust accumulation on photovoltaic (PV) panels," Energy, Elsevier, vol. 239(PD).
    7. Li, Jiaojiao & Zoghi, Mohammad & Zhao, Linfeng, 2022. "Thermo-economic assessment and optimization of a geothermal-driven tri-generation system for power, cooling, and hydrogen production," Energy, Elsevier, vol. 244(PB).
    8. Fan, Siyuan & Wang, Xiao & Wang, Zun & Sun, Bo & Zhang, Zhenhai & Cao, Shengxian & Zhao, Bo & Wang, Yu, 2022. "A novel image enhancement algorithm to determine the dust level on photovoltaic (PV) panels," Renewable Energy, Elsevier, vol. 201(P1), pages 172-180.
    9. Yao, Wanxiang & Kong, Xiangru & Xu, Ai & Xu, Puyan & Wang, Yan & Gao, Weijun, 2023. "New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Yousef Alharbi & Ahmed Darwish & Xiandong Ma, 2023. "A Comprehensive Review of Distributed MPPT for Grid-Tied PV Systems at the Sub-Module Level," Energies, MDPI, vol. 16(14), pages 1-23, July.
    11. Catarina Pinho Correia Valério Bernardo & Ricardo A. Marques Lameirinhas & João Paulo Neto Torres & António Baptista, 2023. "The Shading Influence on the Economic Viability of a Real Photovoltaic System Project," Energies, MDPI, vol. 16(6), pages 1-17, March.
    12. Cheng-En Ye & Cheng-Chi Tai & Yu-Pei Huang, 2023. "Disperse Partial Shading Effect of Photovoltaic Array by Means of the Modified Complementary SuDoKu Puzzle Topology," Energies, MDPI, vol. 16(13), pages 1-16, June.
    13. Lin, Xueshan & Huang, Tao & Bompard, Ettore & Wang, Beibei & Zheng, Yaxian, 2023. "Ex-ante market power evaluation and mitigation in day-ahead electricity market considering market maturity levels," Energy, Elsevier, vol. 278(C).
    14. Dongmin Yu & Rijun Wang, 2022. "An Optimal Investigation of Convective Fluid Flow Suspended by Carbon Nanotubes and Thermal Radiation Impact," Mathematics, MDPI, vol. 10(9), pages 1-15, May.
    15. Fan, Siyuan & Wang, Xiao & Cao, Shengxian & Wang, Yu & Zhang, Yanhui & Liu, Bingzheng, 2022. "A novel model to determine the relationship between dust concentration and energy conversion efficiency of photovoltaic (PV) panels," Energy, Elsevier, vol. 252(C).
    16. Wang, Feng & Han, Xu & Wang, Zhihao & Yang, Weibo, 2024. "Dust removal by water spray, condensation and defrosting based on superhydrophobic fin surface," Energy, Elsevier, vol. 304(C).
    17. João Paulo N. Torres & Ana Sofia De Jesus & Ricardo A. Marques Lameirinhas, 2022. "How to Improve an Offshore Wind Station," Energies, MDPI, vol. 15(13), pages 1-20, July.
    18. Shen, Yu & He, Zengxiang & Xu, Zhen & Wang, Yiye & Li, Chenxi & Zhang, Jinxia & Zhang, Kanjian & Wei, Haikun, 2022. "Modeling of photovoltaic modules under common shading conditions," Energy, Elsevier, vol. 256(C).
    19. Shing-Lih Wu & Hung-Cheng Chen & Kai-Jun Peng, 2023. "Quantification of Dust Accumulation on Solar Panels Using the Contact-Characteristics-Based Discrete Element Method," Energies, MDPI, vol. 16(6), pages 1-15, March.
    20. Tingting Cai & Dongmin Yu & Huanan Liu & Fengkai Gao, 2022. "RETRACTED: Computational Analysis of Variational Inequalities Using Mean Extra-Gradient Approach," Mathematics, MDPI, vol. 10(13), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4777-:d:1173567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.