IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2432-d357231.html
   My bibliography  Save this article

Power and Frequency Control in the National Power System of the 370 MW Coal Fired Unit Superstructured with a Gas Turbine

Author

Listed:
  • Ryszard Bartnik

    (Department of Power Engineering Management, Opole University of Technology, 45-758 Opole, Poland)

  • Zbigniew Buryn

    (Department of Power Engineering Management, Opole University of Technology, 45-758 Opole, Poland)

  • Anna Hnydiuk-Stefan

    (Department of Power Engineering Management, Opole University of Technology, 45-758 Opole, Poland)

  • Marcin Szega

    (Department of Thermal Technology, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Tomasz Popławski

    (Department of Electrical Engineering, Czestochowa University of Technology, 42-201 Częstochowa, Poland)

Abstract

A very important task of power units with high power capacity is their participation in the control of the national power system. One of the most important questions posed at work is whether a 370 MW power unit superstructured with a gas turbine in parallel and a heat recovery steam generator be able to take part in the national power system control and if such an upgrade will be economically effective. The analysis was carried out using a proprietary and novel mathematical model. The model takes into account, among others, the influence of the ambient temperature on the parameters of the gas turbine and the changes in thermal steam parameters at its steam extractions as a result of load changes. The results of the analyses showed that it is possible for the modernized unit to participate in the power system control. It can be done only by using a gas turbine with a variable power and a shut off option. The presented results of economic calculations show that at price and cost levels assumed for calculations, the turbine gas superstructure is at the threshold of viability and the investment carries a high degree of risk.

Suggested Citation

  • Ryszard Bartnik & Zbigniew Buryn & Anna Hnydiuk-Stefan & Marcin Szega & Tomasz Popławski, 2020. "Power and Frequency Control in the National Power System of the 370 MW Coal Fired Unit Superstructured with a Gas Turbine," Energies, MDPI, vol. 13(10), pages 1-35, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2432-:d:357231
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2432/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2432/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Escosa, Jesús M. & Romeo, Luis M., 2009. "Optimizing CO2 avoided cost by means of repowering," Applied Energy, Elsevier, vol. 86(11), pages 2351-2358, November.
    2. Bianchi, Michele & Branchini, Lisa & Cesari, Simone & De Pascale, Andrea & Melino, Francesco, 2015. "Repowering existing under-utilized WTE power plant with gas turbines," Applied Energy, Elsevier, vol. 160(C), pages 902-911.
    3. Abdulrahman Almutairi & Pericles Pilidis & Nawaf Al-Mutawa, 2015. "Energetic and Exergetic Analysis of Combined Cycle Power Plant: Part-1 Operation and Performance," Energies, MDPI, vol. 8(12), pages 1-18, December.
    4. Bianchi, Michele & Branchini, Lisa & De Pascale, Andrea, 2014. "Combining waste-to-energy steam cycle with gas turbine units," Applied Energy, Elsevier, vol. 130(C), pages 764-773.
    5. Dominika Matuszewska & Piotr Olczak, 2020. "Evaluation of Using Gas Turbine to Increase Efficiency of the Organic Rankine Cycle (ORC)," Energies, MDPI, vol. 13(6), pages 1-21, March.
    6. Carlo Carcasci & Lapo Cheli & Pietro Lubello & Lorenzo Winchler, 2020. "Off-Design Performances of an Organic Rankine Cycle for Waste Heat Recovery from Gas Turbines," Energies, MDPI, vol. 13(5), pages 1-15, March.
    7. Gowtham Mohan & Sujata Dahal & Uday Kumar & Andrew Martin & Hamid Kayal, 2014. "Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis," Energies, MDPI, vol. 7(10), pages 1-24, October.
    8. Popli, Sahil & Rodgers, Peter & Eveloy, Valerie, 2012. "Trigeneration scheme for energy efficiency enhancement in a natural gas processing plant through turbine exhaust gas waste heat utilization," Applied Energy, Elsevier, vol. 93(C), pages 624-636.
    9. Saeed Soltani & Hassan Athari & Marc A. Rosen & Seyed Mohammad Seyed Mahmoudi & Tatiana Morosuk, 2015. "Thermodynamic Analyses of Biomass Gasification Integrated Externally Fired, Post-Firing and Dual-Fuel Combined Cycles," Sustainability, MDPI, vol. 7(2), pages 1-15, January.
    10. Dominik Kryzia & Michał Kopacz & Katarzyna Kryzia, 2020. "The Valuation of the Operational Flexibility of the Energy Investment Project Based on a Gas-Fired Power Plant," Energies, MDPI, vol. 13(7), pages 1-16, March.
    11. Ryszard Bartnik & Waldemar Skomudek & Zbigniew Buryn & Anna Hnydiuk-Stefan & Aleksandra Otawa, 2018. "Methodology and Continuous Time Mathematical Model to Select Optimum Power of Gas Turbine Set for Dual-Fuel Gas-Steam Combined Heat and Power Plant in Parallel System," Energies, MDPI, vol. 11(7), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fidelis. I. Abam & Ogheneruona E. Diemuodeke & Ekwe. B. Ekwe & Mohammed Alghassab & Olusegun D. Samuel & Zafar A. Khan & Muhammad Imran & Muhammad Farooq, 2020. "Exergoeconomic and Environmental Modeling of Integrated Polygeneration Power Plant with Biomass-Based Syngas Supplemental Firing," Energies, MDPI, vol. 13(22), pages 1-27, November.
    2. Mehrpanahi, A. & Nikbakht Naserabad, S. & Ahmadi, G., 2019. "Multi-objective linear regression based optimization of full repowering a single pressure steam power plant," Energy, Elsevier, vol. 179(C), pages 1017-1035.
    3. Vladimir Kindra & Igor Maksimov & Ivan Komarov & Cheng Xu & Tuantuan Xin, 2023. "Feasibility Study of Scheme and Regenerator Parameters for Trinary Power Cycles," Energies, MDPI, vol. 16(9), pages 1-25, May.
    4. Dominika Matuszewska & Marta Kuta & Piotr Olczak, 2020. "Techno-Economic Assessment of Mobilized Thermal Energy Storage System Using Geothermal Source in Polish Conditions," Energies, MDPI, vol. 13(13), pages 1-24, July.
    5. Michael Metzger & Mathias Duckheim & Marco Franken & Hans Joerg Heger & Matthias Huber & Markus Knittel & Till Kolster & Martin Kueppers & Carola Meier & Dieter Most & Simon Paulus & Lothar Wyrwoll & , 2021. "Pathways toward a Decarbonized Future—Impact on Security of Supply and System Stability in a Sustainable German Energy System," Energies, MDPI, vol. 14(3), pages 1-28, January.
    6. Anvari, Simin & Mahian, Omid & Taghavifar, Hadi & Wongwises, Somchai & Desideri, Umberto, 2020. "4E analysis of a modified multigeneration system designed for power, heating/cooling, and water desalination," Applied Energy, Elsevier, vol. 270(C).
    7. Peng, Benhong & Zhao, Yinyin & Elahi, Ehsan & Wan, Anxia, 2023. "Can third-party market cooperation solve the dilemma of emissions reduction? A case study of energy investment project conflict analysis in the context of carbon neutrality," Energy, Elsevier, vol. 264(C).
    8. Maria Alessandra Ancona & Michele Bianchi & Lisa Branchini & Andrea De Pascale & Francesco Melino & Antonio Peretto & Noemi Torricelli, 2021. "Systematic Comparison of ORC and s-CO 2 Combined Heat and Power Plants for Energy Harvesting in Industrial Gas Turbines," Energies, MDPI, vol. 14(12), pages 1-22, June.
    9. Piotr Olczak & Małgorzata Olek & Dominika Matuszewska & Artur Dyczko & Tomasz Mania, 2021. "Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland," Energies, MDPI, vol. 14(2), pages 1-22, January.
    10. Mariusz Niekurzak & Jerzy Mikulik, 2021. "Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study," Energies, MDPI, vol. 14(23), pages 1-22, December.
    11. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    12. Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Romeo, Luis M., 2013. "Design and analysis of heat exchanger networks for integrated Ca-looping systems," Applied Energy, Elsevier, vol. 111(C), pages 690-700.
    13. Naserabad, S. Nikbakht & Mehrpanahi, A. & Ahmadi, G., 2018. "Multi-objective optimization of HRSG configurations on the steam power plant repowering specifications," Energy, Elsevier, vol. 159(C), pages 277-293.
    14. Darya Pyatkina & Tamara Shcherbina & Vadim Samusenkov & Irina Razinkina & Mariusz Sroka, 2021. "Modeling and Management of Power Supply Enterprises’ Cash Flows," Energies, MDPI, vol. 14(4), pages 1-17, February.
    15. Anton Petrochenkov & Nikolai Pavlov & Nikolai Bachev & Alexander Romodin & Iurii Butorin & Nikolai Kolesnikov, 2023. "Ensuring Power Balance in the Electrical Grid of an Oil-and-Gas-Producing Enterprise with Distributed Generation Using Associated Petroleum Gas," Sustainability, MDPI, vol. 15(19), pages 1-15, September.
    16. Piotr W. Saługa & Paweł Grzesiak & Jacek Kamiński, 2020. "Valuation of Decision Flexibility and Strategic Value in Coal Gasification Projects with the Option-To-Switch between Different Outputs," Energies, MDPI, vol. 13(11), pages 1-20, June.
    17. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2020. "Experimental Validation of a New Modeling for the Design Optimization of a Sliding Vane Rotary Expander Operating in an ORC-Based Power Unit," Energies, MDPI, vol. 13(16), pages 1-23, August.
    18. Bianchi, Michele & Branchini, Lisa & Cesari, Simone & De Pascale, Andrea & Melino, Francesco, 2015. "Repowering existing under-utilized WTE power plant with gas turbines," Applied Energy, Elsevier, vol. 160(C), pages 902-911.
    19. Hedin, Niklas & Andersson, Linnéa & Bergström, Lennart & Yan, Jinyue, 2013. "Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption," Applied Energy, Elsevier, vol. 104(C), pages 418-433.
    20. Bou Nader, Wissam S. & Mansour, Charbel J. & Nemer, Maroun G., 2018. "Optimization of a Brayton external combustion gas-turbine system for extended range electric vehicles," Energy, Elsevier, vol. 150(C), pages 745-758.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2432-:d:357231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.