IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3485-d1125034.html
   My bibliography  Save this article

Thermal Runaway Vent Gases from High-Capacity Energy Storage LiFePO 4 Lithium Iron

Author

Listed:
  • Feng Qian

    (School of Mechanical and Engineering, Dalian Jiaotong University, Dalian 116028, China)

  • Hewu Wang

    (State Key Laboratory of Automotive Safety and Energy, Tsinghua Universtiy, Beijing 100084, China)

  • Minghai Li

    (School of Mechanical and Engineering, Dalian Jiaotong University, Dalian 116028, China)

  • Cheng Li

    (State Key Laboratory of Automotive Safety and Energy, Tsinghua Universtiy, Beijing 100084, China)

  • Hengjie Shen

    (School of Mechanical and Engineering, Dalian Jiaotong University, Dalian 116028, China)

  • Juan Wang

    (School of Mechanical and Engineering, Dalian Jiaotong University, Dalian 116028, China)

  • Yalun Li

    (State Key Laboratory of Automotive Safety and Energy, Tsinghua Universtiy, Beijing 100084, China)

  • Minggao Ouyang

    (State Key Laboratory of Automotive Safety and Energy, Tsinghua Universtiy, Beijing 100084, China)

Abstract

Lithium batteries are being utilized more widely, increasing the focus on their thermal safety, which is primarily brought on by their thermal runaway. This paper’s focus is the energy storage power station’s 50 Ah lithium iron phosphate battery. An in situ eruption study was conducted in an inert environment, while a thermal runaway experiment was conducted utilizing sealed pressure containers and an external heating triggering mechanism. Both the amount of gas release and the battery’s maximum temperature were discovered. Using gas chromatography, the gas emission from the battery was examined. Its principal constituents included CO, H 2 , CO 2 , CH 4 , C 2 H 4 , and so on. Moreover, the experiment discovered a second eruption of lithium iron phosphate, and the stage of its eruption was separated by the pressure signal of the sealed experimental chamber, giving a theoretical foundation and technological backing for the thermal catastrophe safety of lithium batteries.

Suggested Citation

  • Feng Qian & Hewu Wang & Minghai Li & Cheng Li & Hengjie Shen & Juan Wang & Yalun Li & Minggao Ouyang, 2023. "Thermal Runaway Vent Gases from High-Capacity Energy Storage LiFePO 4 Lithium Iron," Energies, MDPI, vol. 16(8), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3485-:d:1125034
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3485/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3485/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Peifeng & Yao, Caixia & Mao, Binbin & Wang, Qingsong & Sun, Jinhua & Bai, Zhonghao, 2020. "The critical characteristics and transition process of lithium-ion battery thermal runaway," Energy, Elsevier, vol. 213(C).
    2. Kvasha, Andriy & Gutiérrez, César & Osa, Urtzi & de Meatza, Iratxe & Blazquez, J. Alberto & Macicior, Haritz & Urdampilleta, Idoia, 2018. "A comparative study of thermal runaway of commercial lithium ion cells," Energy, Elsevier, vol. 159(C), pages 547-557.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyung-Wook Kang & Hyun-Seong Lee & Jae-Ho Rhee & Kun-A Lee, 2023. "DC Voltage Source Based on a Battery of Supercapacitors with a Regulator in the Form of an Isolated Boost LCC Resonant Converter," Energies, MDPI, vol. 16(18), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Zhizuan & Li, Maoyu & Zhou, Xiaodong & Li, Lun & Ju, Xiaoyu & Yang, Lizhong, 2024. "Investigating thermal runaway triggering mechanism of the prismatic lithium iron phosphate battery under thermal abuse," Renewable Energy, Elsevier, vol. 220(C).
    2. Liu, Yanhui & Zhang, Lei & Ding, Yifei & Huang, Xianjia & Huang, Xinyan, 2024. "Effect of thermal impact on the onset and propagation of thermal runaway over cylindrical Li-ion batteries," Renewable Energy, Elsevier, vol. 222(C).
    3. Li, Yalun & Gao, Xinlei & Feng, Xuning & Ren, Dongsheng & Li, Yan & Hou, Junxian & Wu, Yu & Du, Jiuyu & Lu, Languang & Ouyang, Minggao, 2022. "Battery eruption triggered by plated lithium on an anode during thermal runaway after fast charging," Energy, Elsevier, vol. 239(PB).
    4. Liu, Fen & Wang, Jianfeng & Yang, Na & Wang, Fuqiang & Chen, Yaping & Lu, Dongchen & Liu, Hui & Du, Qian & Ren, Xutong & Shi, Mengyu, 2022. "Experimental study on the alleviation of thermal runaway propagation from an overcharged lithium-ion battery module using different thermal insulation layers," Energy, Elsevier, vol. 257(C).
    5. Zhou, Zhizuan & Li, Maoyu & Zhou, Xiaodong & Ju, Xiaoyu & Yang, Lizhong, 2023. "Investigating thermal runaway characteristics and trigger mechanism of the parallel lithium-ion battery," Applied Energy, Elsevier, vol. 349(C).
    6. Zhou, Zhizuan & Zhou, Xiaodong & Cao, Bei & Yang, Lizhong & Liew, K.M., 2022. "Investigating the relationship between heating temperature and thermal runaway of prismatic lithium-ion battery with LiFePO4 as cathode," Energy, Elsevier, vol. 256(C).
    7. Mao, Ning & Gadkari, Siddharth & Wang, Zhirong & Zhang, Teng & Bai, Jinglong & Cai, Qiong, 2023. "A comparative analysis of lithium-ion batteries with different cathodes under overheating and nail penetration conditions," Energy, Elsevier, vol. 278(PB).
    8. Mahesh Suresh Patil & Satyam Panchal & Namwon Kim & Moo-Yeon Lee, 2018. "Cooling Performance Characteristics of 20 Ah Lithium-Ion Pouch Cell with Cold Plates along Both Surfaces," Energies, MDPI, vol. 11(10), pages 1-19, September.
    9. Pan, Yue & Kong, Xiangdong & Yuan, Yuebo & Sun, Yukun & Han, Xuebing & Yang, Hongxin & Zhang, Jianbiao & Liu, Xiaoan & Gao, Panlong & Li, Yihui & Lu, Languang & Ouyang, Minggao, 2023. "Detecting the foreign matter defect in lithium-ion batteries based on battery pilot manufacturing line data analyses," Energy, Elsevier, vol. 262(PB).
    10. Jia, Yikai & Yin, Sha & Liu, Binghe & Zhao, Hui & Yu, Huili & Li, Jie & Xu, Jun, 2019. "Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading," Energy, Elsevier, vol. 166(C), pages 951-960.
    11. Zhang, Wencan & Ouyang, Nan & Yin, Xiuxing & Li, Xingyao & Wu, Weixiong & Huang, Liansheng, 2022. "Data-driven early warning strategy for thermal runaway propagation in Lithium-ion battery modules with variable state of charge," Applied Energy, Elsevier, vol. 323(C).
    12. Mikel Arrinda & Gorka Vertiz & Denis Sanchéz & Aitor Makibar & Haritz Macicior, 2022. "Surrogate Model of the Optimum Global Battery Pack Thermal Management System Control," Energies, MDPI, vol. 15(5), pages 1-20, February.
    13. Zhou, Zhizuan & Zhou, Xiaodong & Ju, Xiaoyu & Li, Maoyu & Cao, Bei & Yang, Lizhong, 2023. "Experimental study of thermal runaway propagation along horizontal and vertical directions for LiFePO4 electrical energy storage modules," Renewable Energy, Elsevier, vol. 207(C), pages 13-26.
    14. Liang, Lin & Zhao, Yaohua & Diao, Yanhua & Ren, Ruyang & Jing, Heran, 2021. "Inclined U-shaped flat microheat pipe array configuration for cooling and heating lithium-ion battery modules in electric vehicles," Energy, Elsevier, vol. 235(C).
    15. Mao, Ning & Zhang, Teng & Wang, Zhirong & Gadkari, Siddharth & Wang, Junling & He, Tengfei & Gao, Tianfeng & Cai, Qiong, 2023. "Revealing the thermal stability and component heat contribution ratio of overcharged lithium-ion batteries during thermal runaway," Energy, Elsevier, vol. 263(PD).
    16. Zhang, Zhendong & Kong, Xiangdong & Zheng, Yuejiu & Zhou, Long & Lai, Xin, 2019. "Real-time diagnosis of micro-short circuit for Li-ion batteries utilizing low-pass filters," Energy, Elsevier, vol. 166(C), pages 1013-1024.
    17. Huang, Zonghou & Liu, Jialong & Zhai, Hongju & Wang, Qingsong, 2021. "Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions," Energy, Elsevier, vol. 233(C).
    18. Yu, Shuyang & Ma, Ya & Xie, Jingying & Xu, Chao & Lu, Taolin, 2024. "Thermal runaway chain reaction determination and mechanism model establishment of NCA-graphite battery based on the internal temperature," Applied Energy, Elsevier, vol. 353(PB).
    19. Zhang, Yue & Cheng, Siyuan & Mei, Wenxin & Jiang, Lihua & Jia, Zhuangzhuang & Cheng, Zhixiang & Sun, Jinhua & Wang, Qingsong, 2023. "Understanding of thermal runaway mechanism of LiFePO4 battery in-depth by three-level analysis," Applied Energy, Elsevier, vol. 336(C).
    20. Weng, Jingwen & Xiao, Changren & Ouyang, Dongxu & Yang, Xiaoqing & Chen, Mingyi & Zhang, Guoqing & Yuen, Richard Kwok Kit & Wang, Jian, 2022. "Mitigation effects on thermal runaway propagation of structure-enhanced phase change material modules with flame retardant additives," Energy, Elsevier, vol. 239(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3485-:d:1125034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.