IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1695-d757681.html
   My bibliography  Save this article

Surrogate Model of the Optimum Global Battery Pack Thermal Management System Control

Author

Listed:
  • Mikel Arrinda

    (CIDETEC, Basque Research and Technology Alliance (BRTA), Po. Miramón 196, 20014 Donostia-San Sebastián, Spain)

  • Gorka Vertiz

    (CIDETEC, Basque Research and Technology Alliance (BRTA), Po. Miramón 196, 20014 Donostia-San Sebastián, Spain)

  • Denis Sanchéz

    (CIDETEC, Basque Research and Technology Alliance (BRTA), Po. Miramón 196, 20014 Donostia-San Sebastián, Spain)

  • Aitor Makibar

    (CIDETEC, Basque Research and Technology Alliance (BRTA), Po. Miramón 196, 20014 Donostia-San Sebastián, Spain)

  • Haritz Macicior

    (CIDETEC, Basque Research and Technology Alliance (BRTA), Po. Miramón 196, 20014 Donostia-San Sebastián, Spain)

Abstract

The control of the battery-thermal-management-system (BTMS) is key to prevent catastrophic events and to ensure long lifespans of the batteries. Nonetheless, to achieve a high-quality control of BTMS, several technical challenges must be faced: safe and homogeneous control in a multi element system with just one actuator, limited computational resources, and energy consumption restrictions. To address those challenges and restrictions, we propose a surrogate BTMS control model consisting of a classification machine-learning model that defines the optimum cooling-heating power of the actuator according to several temperature measurements. The la-belled-data required to build the control model is generated from a simulation environment that integrates model-predictive-control and linear optimization concepts. As a result, a controller that optimally controls the actuator with multi-input temperature signals in a multi-objective optimization problem is constructed. This paper benchmarks the response of the proposal using different classification machine-learning models and compares them with the responses of a state diagram controller and a PID controller. The results show that the proposed surrogate model has 35% less energy consumption than the evaluated state diagram, and 60% less energy consumption than a traditional PID controller, while dealing with multi-input and multi-objective systems.

Suggested Citation

  • Mikel Arrinda & Gorka Vertiz & Denis Sanchéz & Aitor Makibar & Haritz Macicior, 2022. "Surrogate Model of the Optimum Global Battery Pack Thermal Management System Control," Energies, MDPI, vol. 15(5), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1695-:d:757681
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1695/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1695/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabio Viola, 2021. "Electric Vehicles and Psychology," Sustainability, MDPI, vol. 13(2), pages 1-26, January.
    2. Ajaykumar Unagar & Yuan Tian & Manuel Arias Chao & Olga Fink, 2021. "Learning to Calibrate Battery Models in Real-Time with Deep Reinforcement Learning," Energies, MDPI, vol. 14(5), pages 1-12, March.
    3. Arrinda, M. & Berecibar, M. & Oyarbide, M. & Macicior, H. & Muxika, E. & Messagie, M., 2020. "Levelized cost of electricity calculation of the energy generation plant of a CO2 neutral micro-grid," Energy, Elsevier, vol. 208(C).
    4. Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Tilman Altenburg & Eike W. Schamp & Ankur Chaudhary, 2016. "The emergence of electromobility: Comparing technological pathways in France, Germany, China and India," Science and Public Policy, Oxford University Press, vol. 43(4), pages 464-475.
    6. Kvasha, Andriy & Gutiérrez, César & Osa, Urtzi & de Meatza, Iratxe & Blazquez, J. Alberto & Macicior, Haritz & Urdampilleta, Idoia, 2018. "A comparative study of thermal runaway of commercial lithium ion cells," Energy, Elsevier, vol. 159(C), pages 547-557.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Wenjun & Zhu, Jiangong & Qiao, Dongdong & Jiang, Bo & Wang, Xueyuan & Wei, Xuezhe & Dai, Haifeng, 2024. "Prediction of nonlinear degradation knee-point and remaining useful life for lithium-ion batteries using relaxation voltage," Energy, Elsevier, vol. 294(C).
    2. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    3. Roman Gozdur & Tomasz Przerywacz & Dariusz Bogdański, 2021. "Low Power Modular Battery Management System with a Wireless Communication Interface," Energies, MDPI, vol. 14(19), pages 1-20, October.
    4. Christophe Savard & Emiliia Iakovleva & Daniil Ivanchenko & Anton Rassõlkin, 2021. "Accessible Battery Model with Aging Dependency," Energies, MDPI, vol. 14(12), pages 1-16, June.
    5. Fu, Shiyi & Tao, Shengyu & Fan, Hongtao & He, Kun & Liu, Xutao & Tao, Yulin & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method," Applied Energy, Elsevier, vol. 353(PA).
    6. Aneta Wysokińska-Senkus, 2021. "Determinants of Improving the Strategy of Sustainable Energy Management of Building Sustainable Value for Stakeholders—Experience of Organizations in Poland," Energies, MDPI, vol. 14(10), pages 1-18, May.
    7. Sungwoo Jo & Sunkyu Jung & Taemoon Roh, 2021. "Battery State-of-Health Estimation Using Machine Learning and Preprocessing with Relative State-of-Charge," Energies, MDPI, vol. 14(21), pages 1-16, November.
    8. Han, Gaoce & Yan, Jize & Guo, Zhen & Greenwood, David & Marco, James & Yu, Yifei, 2021. "A review on various optical fibre sensing methods for batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Muhammed Shahid & Rizwan Aslam Butt & Attaullah Khawaja, 2022. "Fiscal- and Space-Constrained Energy Optimization Model for Hybrid Grid-Tied Solar Nanogrids," Energies, MDPI, vol. 15(21), pages 1-15, October.
    10. Sanghamitra Mukherjee, 2021. "A Framework to Measure Regional Disparities in Battery Electric Vehicle Diffusion in Ireland," Working Papers 202119, School of Economics, University College Dublin.
    11. Wesseling, Joeri H. & Bidmon, Christina & Bohnsack, René, 2020. "Business model design spaces in socio-technical transitions: The case of electric driving in the Netherlands," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    12. Hu, Lin & Tian, Qingtao & Zou, Changfu & Huang, Jing & Ye, Yao & Wu, Xianhui, 2022. "A study on energy distribution strategy of electric vehicle hybrid energy storage system considering driving style based on real urban driving data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    13. Mao, Ning & Gadkari, Siddharth & Wang, Zhirong & Zhang, Teng & Bai, Jinglong & Cai, Qiong, 2023. "A comparative analysis of lithium-ion batteries with different cathodes under overheating and nail penetration conditions," Energy, Elsevier, vol. 278(PB).
    14. Zhou, Zhizuan & Li, Maoyu & Zhou, Xiaodong & Li, Lun & Ju, Xiaoyu & Yang, Lizhong, 2024. "Investigating thermal runaway triggering mechanism of the prismatic lithium iron phosphate battery under thermal abuse," Renewable Energy, Elsevier, vol. 220(C).
    15. Karadöl, İsrafil & Yıldız, Ceyhun & Şekkeli, Mustafa, 2021. "Determining optimal spatial and temporal complementarity between wind and hydropower," Energy, Elsevier, vol. 230(C).
    16. Weiss, Daniel & Nemeczek, Fabian, 2021. "A text-based monitoring tool for the legitimacy and guidance of technological innovation systems," Technology in Society, Elsevier, vol. 66(C).
    17. Zhu, Yuli & Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wang, Rong & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive state of health estimation for lithium-ion batteries using impedance-based timescale information and ensemble learning," Energy, Elsevier, vol. 284(C).
    18. Guido Ala & Ilhami Colak & Gabriella Di Filippo & Rosario Miceli & Pietro Romano & Carla Silva & Stanimir Valtchev & Fabio Viola, 2021. "Electric Mobility in Portugal: Current Situation and Forecasts for Fuel Cell Vehicles," Energies, MDPI, vol. 14(23), pages 1-23, November.
    19. Mahesh Suresh Patil & Satyam Panchal & Namwon Kim & Moo-Yeon Lee, 2018. "Cooling Performance Characteristics of 20 Ah Lithium-Ion Pouch Cell with Cold Plates along Both Surfaces," Energies, MDPI, vol. 11(10), pages 1-19, September.
    20. Chein-Chung Sun & Chun-Hung Chou & Yu-Liang Lin & Yu-Hua Huang, 2022. "A Cost-Effective Passive/Active Hybrid Equalizer Circuit Design," Energies, MDPI, vol. 15(6), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1695-:d:757681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.