IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3407-d1122062.html
   My bibliography  Save this article

Frequency Regulation Strategy of Two-Area Microgrid System with Electric Vehicle Support Using Novel Fuzzy-Based Dual-Stage Controller and Modified Dragonfly Algorithm

Author

Listed:
  • Balvender Singh

    (Electrical Engineering, Government Women Engineering College, Ajmer 305002, Rajasthan, India)

  • Adam Slowik

    (Department of Electronics and Computer Science, Koszalin University of Technology, 75-453 Koszalin, Poland)

  • Shree Krishan Bishnoi

    (Department of Electrical Engineering, Government Engineering College, Bikaner 334004, Rajasthan, India)

  • Mandeep Sharma

    (Department of Electrical Engineering, Baba Hira Singh Bhattal Institute of Engineering and Technology, Lehragaga 148031, Punjab, India)

Abstract

Energy in microgrids (MGs) can now be generated from a variety of renewable sources, but their effective and sustainable use is dependent on electrical energy storage (EES) systems. Consequently, the expansion of MGs is greatly reliant on EES systems. The high infiltration of electric vehicles (EVs) causes some problems for the smooth functioning of the electric power system. However, EVs are also able to offer ancillary services, such as energy storage, to power systems. The research presented in this paper aims to develop a novel frequency regulation (FR) approach for biogas diesel engines (wind), the organic Rankine cycle (ORC), and solar-based two-area islanded microgrids with EVs in both areas. This article discusses the introduction of a fuzzy logic controller (FLC) for FR with scaled factors configured as proportional integral (PI) and proportional derivative with filter (PDF), i.e., a FLC-SF-PI-PDF controller. A recently created modified dragonfly algorithm is used to determine the best values for the controller parameters. To justify the effectiveness of the proposed controller with the presence of EVs, the execution of the proposed controller is associated with and without the presence of EVs. This research also looks at the different uncertain conditions, non-linearities, and eigenvalue stability analysis to validate the supremacy of the proposed approach.

Suggested Citation

  • Balvender Singh & Adam Slowik & Shree Krishan Bishnoi & Mandeep Sharma, 2023. "Frequency Regulation Strategy of Two-Area Microgrid System with Electric Vehicle Support Using Novel Fuzzy-Based Dual-Stage Controller and Modified Dragonfly Algorithm," Energies, MDPI, vol. 16(8), pages 1-24, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3407-:d:1122062
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3407/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3407/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pushpendra Singh & Nand Kishor Meena & Jin Yang & Shree Krishna Bishnoi & Eduardo Vega-Fuentes & Chengwei Lou, 2021. "Modified Dragonfly Optimisation for Distributed Energy Mix in Distribution Networks," Energies, MDPI, vol. 14(18), pages 1-19, September.
    2. Latif, Abdul & Hussain, S. M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2021. "Double stage controller optimization for load frequency stabilization in hybrid wind-ocean wave energy based maritime microgrid system," Applied Energy, Elsevier, vol. 282(PA).
    3. Rahman, Asadur & Saikia, Lalit Chandra & Sinha, Nidul, 2017. "Automatic generation control of an interconnected two-area hybrid thermal system considering dish-stirling solar thermal and wind turbine system," Renewable Energy, Elsevier, vol. 105(C), pages 41-54.
    4. Elsisi, Mahmoud & Bazmohammadi, Najmeh & Guerrero, Josep M. & Ebrahim, Mohamed A., 2021. "Energy management of controllable loads in multi-area power systems with wind power penetration based on new supervisor fuzzy nonlinear sliding mode control," Energy, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahsa Dehghan Manshadi & Milad Mousavi & M. Soltani & Amir Mosavi & Levente Kovacs, 2022. "Deep Learning for Modeling an Offshore Hybrid Wind–Wave Energy System," Energies, MDPI, vol. 15(24), pages 1-16, December.
    2. Preeti Ranjan Sahu & Rajesh Kumar Lenka & Rajendra Kumar Khadanga & Prakash Kumar Hota & Sidhartha Panda & Taha Selim Ustun, 2022. "Power System Stability Improvement of FACTS Controller and PSS Design: A Time-Delay Approach," Sustainability, MDPI, vol. 14(21), pages 1-22, November.
    3. Daraz, Amil, 2023. "Optimized cascaded controller for frequency stabilization of marine microgrid system," Applied Energy, Elsevier, vol. 350(C).
    4. Cao, Qian & Wei, Du Qu, 2023. "Dynamic surface sliding mode control of chaos in the fourth-order power system," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    5. Guha, Dipayan, 2023. "Non-integer disturbance observer-aided resilient frequency controller applied to hybrid power system," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    6. Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.
    7. Sanath Alahakoon & Rajib Baran Roy & Shantha Jayasinghe Arachchillage, 2023. "Optimizing Load Frequency Control in Standalone Marine Microgrids Using Meta-Heuristic Techniques," Energies, MDPI, vol. 16(13), pages 1-23, June.
    8. Li, Pengfei & Hu, Weihao & Xu, Xiao & Huang, Qi & Liu, Zhou & Chen, Zhe, 2019. "A frequency control strategy of electric vehicles in microgrid using virtual synchronous generator control," Energy, Elsevier, vol. 189(C).
    9. Smruti Ranjan Nayak & Rajendra Kumar Khadanga & Sidhartha Panda & Preeti Ranjan Sahu & Sasmita Padhy & Taha Selim Ustun, 2023. "Participation of Renewable Energy Sources in the Frequency Regulation Issues of a Five-Area Hybrid Power System Utilizing a Sine Cosine-Adopted African Vulture Optimization Algorithm," Energies, MDPI, vol. 16(2), pages 1-21, January.
    10. Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Strategy for System Risk Mitigation Using FACTS Devices in a Wind Incorporated Competitive Power System," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    11. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
    12. Sheikh Safiullah & Asadur Rahman & Shameem Ahmad Lone & S. M. Suhail Hussain & Taha Selim Ustun, 2022. "Novel COVID-19 Based Optimization Algorithm (C-19BOA) for Performance Improvement of Power Systems," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    13. Yu, Min Gyung & Pavlak, Gregory S., 2022. "Extracting interpretable building control rules from multi-objective model predictive control data sets," Energy, Elsevier, vol. 240(C).
    14. Mahmoud Elsisi & Hatim G. Zaini & Karar Mahmoud & Shimaa Bergies & Sherif S. M. Ghoneim, 2021. "Improvement of Trajectory Tracking by Robot Manipulator Based on a New Co-Operative Optimization Algorithm," Mathematics, MDPI, vol. 9(24), pages 1-21, December.
    15. Ganesh Sampatrao Patil & Anwar Mulla & Subhojit Dawn & Taha Selim Ustun, 2022. "Profit Maximization with Imbalance Cost Improvement by Solar PV-Battery Hybrid System in Deregulated Power Market," Energies, MDPI, vol. 15(14), pages 1-21, July.
    16. Arya, Yogendra, 2019. "AGC of PV-thermal and hydro-thermal power systems using CES and a new multi-stage FPIDF-(1+PI) controller," Renewable Energy, Elsevier, vol. 134(C), pages 796-806.
    17. Mahmoodabadi, M.J., 2023. "An optimal robust fuzzy adaptive integral sliding mode controller based upon a multi-objective grey wolf optimization algorithm for a nonlinear uncertain chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    18. Neshat, Mehdi & Mirjalili, Seyedali & Sergiienko, Nataliia Y. & Esmaeilzadeh, Soheil & Amini, Erfan & Heydari, Azim & Garcia, Davide Astiaso, 2022. "Layout optimisation of offshore wave energy converters using a novel multi-swarm cooperative algorithm with backtracking strategy: A case study from coasts of Australia," Energy, Elsevier, vol. 239(PE).
    19. Stanek, Wojciech, 2022. "Thermo-Ecological Cost (TEC) –comparison of energy-ecological efficiency of renewable and non-renewable energy technologies," Energy, Elsevier, vol. 261(PA).
    20. Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3407-:d:1122062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.