IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5690-d632536.html
   My bibliography  Save this article

Modified Dragonfly Optimisation for Distributed Energy Mix in Distribution Networks

Author

Listed:
  • Pushpendra Singh

    (Department of Electrical Engineering, Rajasthan Technical University, Kota 324010, India
    Department of Electrical Engineering, Government Women Engineering College, Ajmer 305002, India)

  • Nand Kishor Meena

    (College of Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK)

  • Jin Yang

    (James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK)

  • Shree Krishna Bishnoi

    (Department of Electronics and Communication, Government Engineering College, Bikaner 334004, India)

  • Eduardo Vega-Fuentes

    (James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK)

  • Chengwei Lou

    (James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK)

Abstract

This article presents a two-stage optimization model aiming to determine optimal energy mix in distribution networks, i.e., battery energy storage, fuel cell, and wind turbines. It aims to alleviate the impact of high renewable penetration on the systems. To solve the proposed complex optimization model, a standard variant of the dragonfly algorithm (DA) has been improved and then applied to find the optimal mix of distributed energy resources. The suggested improvements are validated before their application. A heuristic approach has also been introduced to solve the second stage problem that determines the optimal power dispatch of battery energy storage as per the size suggested by the first stage. The proposed framework was implemented on a benchmark 33-bus and a practical Indian 108-bus distribution network over different test cases. The proposed model for energy mix and modified DA technique has significantly enhanced the operational performance of the network in terms of average annual energy loss reduction, node voltage profiles, and demand fluctuation caused by renewables.

Suggested Citation

  • Pushpendra Singh & Nand Kishor Meena & Jin Yang & Shree Krishna Bishnoi & Eduardo Vega-Fuentes & Chengwei Lou, 2021. "Modified Dragonfly Optimisation for Distributed Energy Mix in Distribution Networks," Energies, MDPI, vol. 14(18), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5690-:d:632536
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5690/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5690/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    2. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    3. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    4. Kumar, Abhishek & Meena, Nand K. & Singh, Arvind R. & Deng, Yan & He, Xiangning & Bansal, R.C. & Kumar, Praveen, 2019. "Strategic integration of battery energy storage systems with the provision of distributed ancillary services in active distribution systems," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balvender Singh & Adam Slowik & Shree Krishan Bishnoi & Mandeep Sharma, 2023. "Frequency Regulation Strategy of Two-Area Microgrid System with Electric Vehicle Support Using Novel Fuzzy-Based Dual-Stage Controller and Modified Dragonfly Algorithm," Energies, MDPI, vol. 16(8), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    2. Zhao, Chunyang & Andersen, Peter Bach & Træholt, Chresten & Hashemi, Seyedmostafa, 2023. "Grid-connected battery energy storage system: a review on application and integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Nathphol Khaboot & Chitchai Srithapon & Apirat Siritaratiwat & Pirat Khunkitti, 2019. "Increasing Benefits in High PV Penetration Distribution System by Using Battery Enegy Storage and Capacitor Placement Based on Salp Swarm Algorithm," Energies, MDPI, vol. 12(24), pages 1-20, December.
    4. Jiang, Yinghua & Kang, Lixia & Liu, Yongzhong, 2020. "Optimal configuration of battery energy storage system with multiple types of batteries based on supply-demand characteristics," Energy, Elsevier, vol. 206(C).
    5. Ali A. Radwan & Ahmed A. Zaki Diab & Abo-Hashima M. Elsayed & Hassan Haes Alhelou & Pierluigi Siano, 2020. "Active Distribution Network Modeling for Enhancing Sustainable Power System Performance; a Case Study in Egypt," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    6. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    7. Nasreddine Belbachir & Mohamed Zellagui & Samir Settoul & Claude Ziad El-Bayeh & Ragab A. El-Sehiemy, 2023. "Multi Dimension-Based Optimal Allocation of Uncertain Renewable Distributed Generation Outputs with Seasonal Source-Load Power Uncertainties in Electrical Distribution Network Using Marine Predator Al," Energies, MDPI, vol. 16(4), pages 1-24, February.
    8. Abhinav Kumar & Sanjay Kumar & Umesh Kumar Sinha & Aashish Kumar Bohre & Akshay Kumar Saha, 2024. "Optimal Clean Energy Resource Allocation in Balanced and Unbalanced Operation of Sustainable Electrical Energy Distribution Networks," Energies, MDPI, vol. 17(18), pages 1-52, September.
    9. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    10. Svetlana Drobyazko & Suparna Wijaya & Pavel Blecharz & Sergii Bogachov & Milyausha Pinskaya, 2021. "Modeling of Prospects for the Development of Regional Renewable Energy," Energies, MDPI, vol. 14(8), pages 1-17, April.
    11. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 160(C), pages 633-652.
    12. Jagdesh Kumar & Chethan Parthasarathy & Mikko Västi & Hannu Laaksonen & Miadreza Shafie-Khah & Kimmo Kauhaniemi, 2020. "Sizing and Allocation of Battery Energy Storage Systems in Åland Islands for Large-Scale Integration of Renewables and Electric Ferry Charging Stations," Energies, MDPI, vol. 13(2), pages 1-23, January.
    13. Chen, Wei-Hsin & Wang, Chi-Ming & Lee, Da-Sheng & Kwon, Eilhann E. & Ashokkumar, Veeramuthu & Culaba, Alvin B., 2022. "Optimization design by evolutionary computation for minimizing thermal stress of a thermoelectric generator with varied numbers of square pin fins," Applied Energy, Elsevier, vol. 314(C).
    14. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.
    15. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Forecasting error processing techniques and frequency domain decomposition for forecasting error compensation and renewable energy firming in hybrid systems," Applied Energy, Elsevier, vol. 313(C).
    16. Andrea Mazza & Hamidreza Mirtaheri & Gianfranco Chicco & Angela Russo & Maurizio Fantino, 2019. "Location and Sizing of Battery Energy Storage Units in Low Voltage Distribution Networks," Energies, MDPI, vol. 13(1), pages 1-20, December.
    17. Da Liu & Kun Sun & Han Huang & Pingzhou Tang, 2018. "Monthly Load Forecasting Based on Economic Data by Decomposition Integration Theory," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
    18. Zhao, Bo & Ren, Junzhi & Chen, Jian & Lin, Da & Qin, Ruwen, 2020. "Tri-level robust planning-operation co-optimization of distributed energy storage in distribution networks with high PV penetration," Applied Energy, Elsevier, vol. 279(C).
    19. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    20. Ilman Sulaeman & Gautham Ram Chandra Mouli & Aditya Shekhar & Pavol Bauer, 2021. "Comparison of AC and DC Nanogrid for Office Buildings with EV Charging, PV and Battery Storage," Energies, MDPI, vol. 14(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5690-:d:632536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.