IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp796-806.html
   My bibliography  Save this article

AGC of PV-thermal and hydro-thermal power systems using CES and a new multi-stage FPIDF-(1+PI) controller

Author

Listed:
  • Arya, Yogendra

Abstract

The interconnected power system with renewable energy sources is an intricate nonlinear system, which frequently brings to light the serious problem of the system frequency and tie-line power fluctuations due to deficient damping under severe and dynamically changing loading conditions. Primarily, the power system generation-demand equilibrium point amendments following a contingency and in this case, it is stiffer to recapture a tolerable equilibrium point via conventional control practices. To overcome this problem, advanced control techniques and fast acting energy storage systems (ESS) are requisite. The ESS such as capacitive energy storage (CES) units have tremendous capability in preserving the generation-demand balance and perpetuating the power grid frequency by effective damping of the power-frequency oscillations caused due to the sudden and variable load disturbances in power system. Hence, the impact of CES units in automatic generation control (AGC) of interconnected power system is analysed and contrasted critically in this paper. Motivated by the fact that fuzzy control techniques display superior performance under volatile operating conditions in contrast to conventional control strategies, this paper also proposes a new design of intelligent multi-stage fuzzy assisted PID with filter-(1 + PI) i.e., FPIDF-(1 + PI) controller to enhance the conduct of AGC of power system. Initially, a two-area photovoltaic-reheat thermal system is considered and the parameters of FPIDF-(1 + PI) controller are optimized utilising imperialist competition algorithm. The ascendancy of the proposed controller is substantiated by comparing the outcomes with PI/FPI/FPIDF controller based on various existing optimization techniques. It is observed that CES units installed in each control area sustain the area controller to restore the area frequency and tie-line power deviations adequately and hastily following a step load disturbance in an area. To exhibit the potency and scalability of CES and the proposed controller over other prevalent control methods, the study is also extended to a multi-unit multi-source hydro-thermal power system. Finally, robustness of the proposed controller with/without CES is validated under large changes in the system parameters and random load demands. Hence, the proposed approach asserts better and vigorous results to supply reliable and high-quality electric power to the end user.

Suggested Citation

  • Arya, Yogendra, 2019. "AGC of PV-thermal and hydro-thermal power systems using CES and a new multi-stage FPIDF-(1+PI) controller," Renewable Energy, Elsevier, vol. 134(C), pages 796-806.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:796-806
    DOI: 10.1016/j.renene.2018.11.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118313909
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.11.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Falahati, Saber & Taher, Seyed Abbas & Shahidehpour, Mohammad, 2016. "Grid frequency control with electric vehicles by using of an optimized fuzzy controller," Applied Energy, Elsevier, vol. 178(C), pages 918-928.
    2. Rahman, Asadur & Saikia, Lalit Chandra & Sinha, Nidul, 2017. "Automatic generation control of an interconnected two-area hybrid thermal system considering dish-stirling solar thermal and wind turbine system," Renewable Energy, Elsevier, vol. 105(C), pages 41-54.
    3. Dhundhara, Sandeep & Verma, Yajvender Pal, 2018. "Capacitive energy storage with optimized controller for frequency regulation in realistic multisource deregulated power system," Energy, Elsevier, vol. 147(C), pages 1108-1128.
    4. Pappachen, Abhijith & Peer Fathima, A., 2017. "Critical research areas on load frequency control issues in a deregulated power system: A state-of-the-art-of-review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 163-177.
    5. Nayeripour, Majid & Hoseintabar, Mohammad & Niknam, Taher, 2011. "Frequency deviation control by coordination control of FC and double-layer capacitor in an autonomous hybrid renewable energy power generation system," Renewable Energy, Elsevier, vol. 36(6), pages 1741-1746.
    6. Guo-Qiang Zeng & Xiao-Qing Xie & Min-Rong Chen, 2017. "An Adaptive Model Predictive Load Frequency Control Method for Multi-Area Interconnected Power Systems with Photovoltaic Generations," Energies, MDPI, vol. 10(11), pages 1-23, November.
    7. Arya, Yogendra, 2017. "AGC performance enrichment of multi-source hydrothermal gas power systems using new optimized FOFPID controller and redox flow batteries," Energy, Elsevier, vol. 127(C), pages 704-715.
    8. Shankar, Ravi & Pradhan, S.R. & Chatterjee, Kalyan & Mandal, Rajasi, 2017. "A comprehensive state of the art literature survey on LFC mechanism for power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1185-1207.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saha, Arindita & Bhaskar, Mahajan Sagar & Almakhles, Dhafer J. & Elmorshedy, Mahmoud F., 2024. "Employment of renewable based sources in amalgamated frequency-voltage control restructured system with TSA trained IPD(1+I) controller," Renewable Energy, Elsevier, vol. 222(C).
    2. Arya, Yogendra, 2019. "Impact of hydrogen aqua electrolyzer-fuel cell units on automatic generation control of power systems with a new optimal fuzzy TIDF-II controller," Renewable Energy, Elsevier, vol. 139(C), pages 468-482.
    3. González-Hernández, José Genaro & Salas-Cabrera, Rubén & Vázquez-Bautista, Roberto & Ong-de-la-Cruz, Luis Manuel & Rodríguez-Guillén, Joel, 2021. "A novel MPPT PI discrete reverse-acting controller for a wind energy conversion system," Renewable Energy, Elsevier, vol. 178(C), pages 904-915.
    4. Daogang Peng & Yue Xu & Huirong Zhao, 2019. "Research on Intelligent Predictive AGC of a Thermal Power Unit Based on Control Performance Standards," Energies, MDPI, vol. 12(21), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Latif, Abdul & Hussain, S.M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2020. "State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multi-area traditional and renewable energy based power systems," Applied Energy, Elsevier, vol. 266(C).
    2. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    3. Hassan Haes Alhelou & Mohamad-Esmail Hamedani-Golshan & Reza Zamani & Ehsan Heydarian-Forushani & Pierluigi Siano, 2018. "Challenges and Opportunities of Load Frequency Control in Conventional, Modern and Future Smart Power Systems: A Comprehensive Review," Energies, MDPI, vol. 11(10), pages 1-35, September.
    4. Dhundhara, Sandeep & Verma, Yajvender Pal, 2018. "Capacitive energy storage with optimized controller for frequency regulation in realistic multisource deregulated power system," Energy, Elsevier, vol. 147(C), pages 1108-1128.
    5. Eleftherios Vlahakis & Leonidas Dritsas & George Halikias, 2019. "Distributed LQR Design for a Class of Large-Scale Multi-Area Power Systems," Energies, MDPI, vol. 12(14), pages 1-28, July.
    6. Li, Pengfei & Hu, Weihao & Xu, Xiao & Huang, Qi & Liu, Zhou & Chen, Zhe, 2019. "A frequency control strategy of electric vehicles in microgrid using virtual synchronous generator control," Energy, Elsevier, vol. 189(C).
    7. Akram, Umer & Nadarajah, Mithulananthan & Shah, Rakibuzzaman & Milano, Federico, 2020. "A review on rapid responsive energy storage technologies for frequency regulation in modern power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    8. Leonardo Peña-Pupo & Herminio Martínez-García & Encarna García-Vílchez & Ernesto Y. Fariñas-Wong & José R. Núñez-Álvarez, 2021. "Combined Method of Flow-Reduced Dump Load for Frequency Control of an Autonomous Micro-Hydropower in AC Microgrids," Energies, MDPI, vol. 14(23), pages 1-17, December.
    9. Dillip Kumar Mishra & Daria Złotecka & Li Li, 2022. "Significance of SMES Devices for Power System Frequency Regulation Scheme considering Distributed Energy Resources in a Deregulated Environment," Energies, MDPI, vol. 15(5), pages 1-32, February.
    10. Hossam Hassan Ali & Ahmed Fathy & Abdullah M. Al-Shaalan & Ahmed M. Kassem & Hassan M. H. Farh & Abdullrahman A. Al-Shamma’a & Hossam A. Gabbar, 2021. "A Novel Sooty Terns Algorithm for Deregulated MPC-LFC Installed in Multi-Interconnected System with Renewable Energy Plants," Energies, MDPI, vol. 14(17), pages 1-27, August.
    11. Arman Oshnoei & Rahmat Khezri & S. M. Muyeen, 2019. "Model Predictive-Based Secondary Frequency Control Considering Heat Pump Water Heaters," Energies, MDPI, vol. 12(3), pages 1-18, January.
    12. Narendra Kumar Jena & Subhadra Sahoo & Binod Kumar Sahu & Amiya Kumar Naik & Mohit Bajaj & Stanislav Misak & Vojtech Blazek & Lukas Prokop, 2023. "Impact of a Redox Flow Battery on the Frequency Stability of a Five-Area System Integrated with Renewable Sources," Energies, MDPI, vol. 16(14), pages 1-29, July.
    13. Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.
    14. Héctor Migallón & Akram Belazi & José-Luis Sánchez-Romero & Héctor Rico & Antonio Jimeno-Morenilla, 2020. "Settings-Free Hybrid Metaheuristic General Optimization Methods," Mathematics, MDPI, vol. 8(7), pages 1-25, July.
    15. Anh-Tuan Tran & Bui Le Ngoc Minh & Van Van Huynh & Phong Thanh Tran & Emmanuel Nduka Amaefule & Van-Duc Phan & Tam Minh Nguyen, 2021. "Load Frequency Regulator in Interconnected Power System Using Second-Order Sliding Mode Control Combined with State Estimator," Energies, MDPI, vol. 14(4), pages 1-17, February.
    16. Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.
    17. Abdul Latif & Arup Pramanik & Dulal Chandra Das & Israfil Hussain & Sudhanshu Ranjan, 2018. "Plug in hybrid vehicle-wind-diesel autonomous hybrid power system: frequency control using FA and CSA optimized controller," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(5), pages 1147-1158, October.
    18. Liu, Liuchen & Zhu, Tong & Pan, Yu & Wang, Hai, 2017. "Multiple energy complementation based on distributed energy systems – Case study of Chongming county, China," Applied Energy, Elsevier, vol. 192(C), pages 329-336.
    19. Bashar Abbas Fadheel & Noor Izzri Abdul Wahab & Ali Jafer Mahdi & Manoharan Premkumar & Mohd Amran Bin Mohd Radzi & Azura Binti Che Soh & Veerapandiyan Veerasamy & Andrew Xavier Raj Irudayaraj, 2023. "A Hybrid Grey Wolf Assisted-Sparrow Search Algorithm for Frequency Control of RE Integrated System," Energies, MDPI, vol. 16(3), pages 1-28, January.
    20. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:796-806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.