Second-Life Battery Capacity Estimation and Method Comparison
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Xiaoqiong Pang & Rui Huang & Jie Wen & Yuanhao Shi & Jianfang Jia & Jianchao Zeng, 2019. "A Lithium-ion Battery RUL Prediction Method Considering the Capacity Regeneration Phenomenon," Energies, MDPI, vol. 12(12), pages 1-14, June.
- Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.
- Wang, Limei & Pan, Chaofeng & Liu, Liang & Cheng, Yong & Zhao, Xiuliang, 2016. "On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis," Applied Energy, Elsevier, vol. 168(C), pages 465-472.
- Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
- Patil, Meru A. & Tagade, Piyush & Hariharan, Krishnan S. & Kolake, Subramanya M. & Song, Taewon & Yeo, Taejung & Doo, Seokgwang, 2015. "A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation," Applied Energy, Elsevier, vol. 159(C), pages 285-297.
- Shengjin Tang & Chuanqiang Yu & Xue Wang & Xiaosong Guo & Xiaosheng Si, 2014. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error," Energies, MDPI, vol. 7(2), pages 1-28, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Matthew Beatty & Dani Strickland & Pedro Ferreira, 2024. "A Review of Methods of Generating Incremental Capacity–Differential Voltage Curves for Battery Health Determination," Energies, MDPI, vol. 17(17), pages 1-32, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Ma, Guijun & Zhang, Yong & Cheng, Cheng & Zhou, Beitong & Hu, Pengchao & Yuan, Ye, 2019. "Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Shaheer Ansari & Afida Ayob & Molla Shahadat Hossain Lipu & Aini Hussain & Mohamad Hanif Md Saad, 2021. "Data-Driven Remaining Useful Life Prediction for Lithium-Ion Batteries Using Multi-Charging Profile Framework: A Recurrent Neural Network Approach," Sustainability, MDPI, vol. 13(23), pages 1-25, December.
- Xu, Xiaodong & Tang, Shengjin & Yu, Chuanqiang & Xie, Jian & Han, Xuebing & Ouyang, Minggao, 2021. "Remaining Useful Life Prediction of Lithium-ion Batteries Based on Wiener Process Under Time-Varying Temperature Condition," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
- Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
- Jun Peng & Zhiyong Zheng & Xiaoyong Zhang & Kunyuan Deng & Kai Gao & Heng Li & Bin Chen & Yingze Yang & Zhiwu Huang, 2020. "A Data-Driven Method with Feature Enhancement and Adaptive Optimization for Lithium-Ion Battery Remaining Useful Life Prediction," Energies, MDPI, vol. 13(3), pages 1-20, February.
- Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Gwan-Soo Park & Hee-Je Kim, 2019. "Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features," Energies, MDPI, vol. 12(22), pages 1-14, November.
- Jianxun Zhang & Xiao He & Xiaosheng Si & Changhua Hu & Donghua Zhou, 2017. "A Novel Multi-Phase Stochastic Model for Lithium-Ion Batteries’ Degradation with Regeneration Phenomena," Energies, MDPI, vol. 10(11), pages 1-24, October.
- Haipeng Pan & Chengte Chen & Minming Gu, 2022. "A Method for Predicting the Remaining Useful Life of Lithium Batteries Considering Capacity Regeneration and Random Fluctuations," Energies, MDPI, vol. 15(7), pages 1-15, March.
- Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.
- Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
- Yang, Yixin, 2021. "A machine-learning prediction method of lithium-ion battery life based on charge process for different applications," Applied Energy, Elsevier, vol. 292(C).
- Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).
- Hong, Joonki & Lee, Dongheon & Jeong, Eui-Rim & Yi, Yung, 2020. "Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning," Applied Energy, Elsevier, vol. 278(C).
- Shuai Wang & Lingling Zhao & Xiaohong Su & Peijun Ma, 2014. "Prognostics of Lithium-Ion Batteries Based on Battery Performance Analysis and Flexible Support Vector Regression," Energies, MDPI, vol. 7(10), pages 1-17, October.
- Chu Wang & Zehui Liu & Yaohong Sun & Yinghui Gao & Ping Yan, 2021. "Aging Behavior of Lithium Titanate Battery under High-Rate Discharging Cycle," Energies, MDPI, vol. 14(17), pages 1-14, September.
- Ling Mao & Jie Xu & Jiajun Chen & Jinbin Zhao & Yuebao Wu & Fengjun Yao, 2020. "A LSTM-STW and GS-LM Fusion Method for Lithium-Ion Battery RUL Prediction Based on EEMD," Energies, MDPI, vol. 13(9), pages 1-13, May.
- Liu, Chang & Wang, Yujie & Chen, Zonghai, 2019. "Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system," Energy, Elsevier, vol. 166(C), pages 796-806.
- Ma, Qiuhui & Zheng, Ying & Yang, Weidong & Zhang, Yong & Zhang, Hong, 2021. "Remaining useful life prediction of lithium battery based on capacity regeneration point detection," Energy, Elsevier, vol. 234(C).
More about this item
Keywords
energy storage; second-life battery; capacity estimation; capacity fade remaining useful life;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3244-:d:1116204. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.