IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v303y2024ics036054422401661x.html
   My bibliography  Save this article

Battery health prognostics based on improved incremental capacity using a hybrid grey modelling and Gaussian process regression

Author

Listed:
  • Li, Kailing
  • Xie, Naiming

Abstract

Battery health prognostics management is an important prerequisite for ensuring its safe use. As the battery is charging and discharging, its capacity deteriorates. Incremental capacity (IC) analysis is a common tool to analyse the degradation process based on the change rate of capacity relative to voltage. However, measuring battery voltage and current is difficult and there are inherent errors. This paper improves the IC curve from the perspective of time series, extracts a health indicator (HI), and uses the hybrid prediction model to predict the remaining useful life (RUL). Firstly, we convert the traditional IC-voltage (IC-V) curve to the IC-time (IC-T) curve. The time series corresponding to the peak of the improved curve is extracted. Secondly, the extracted degradation HI is predicted using grey forecasting model, and a probabilistic and iterative hybrid battery prediction method is established combined with Gaussian process regression. Finally, public datasets are used to validate the proposed method at different starting points and comparisons with other prediction methods are carried out. Results show that the HI based on the improved IC curve is highly correlated with the degradation process and the proposed method can provide an accurate result, which verifies its effectiveness and rationality.

Suggested Citation

  • Li, Kailing & Xie, Naiming, 2024. "Battery health prognostics based on improved incremental capacity using a hybrid grey modelling and Gaussian process regression," Energy, Elsevier, vol. 303(C).
  • Handle: RePEc:eee:energy:v:303:y:2024:i:c:s036054422401661x
    DOI: 10.1016/j.energy.2024.131888
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422401661X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131888?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:303:y:2024:i:c:s036054422401661x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.