IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v256y2019ics0306261919315284.html
   My bibliography  Save this article

Accelerated fading recognition for lithium-ion batteries with Nickel-Cobalt-Manganese cathode using quantile regression method

Author

Listed:
  • Zhang, Caiping
  • Wang, Yubin
  • Gao, Yang
  • Wang, Fang
  • Mu, Biqiang
  • Zhang, Weige

Abstract

The requirement for energy density of lithium-ion batteries becomes more urgent due to the rising demand for driving range of electric vehicles in recent years. Meanwhile, the performance stability of batteries with high energy densities tends to deteriorate, leading to accelerating degradation and safety issues. As a result, it is critical to explore the reasons that yield the sudden degradation and to recognize the degradation knee point of Nickel-Cobalt-Manganese batteries commonly used for electric vehicles. Existing results have disclosed that the lithium deposition of negative electrode dominates the sudden degradation of battery capacity. This paper extracts key parameters that characterize the aging status to facilitate knee point recognition in engineering practice. Furthermore, a novel method that integrates quantile regression and Monte Carlo simulation method to identify the accelerated fading knee point is introduced. The dynamic safety boundary determination method for the whole battery lifetime is proposed to update and monitor the safety zone. It is verified by experiments that the recognition results of capacity degradation knee point appear within 90–95% capacity range at 25 °C, 35 °C and 45 °C conditions, which can provide an early warning before the battery fails. Using the proposed method for recognizing the sudden degradation of capacity, recognition result is effective even if the input is disturbed and has strong reliability and stability under different conditions. It is helpful to promote the sustainable and stable development of the electric vehicles and improve advanced applied energy technologies.

Suggested Citation

  • Zhang, Caiping & Wang, Yubin & Gao, Yang & Wang, Fang & Mu, Biqiang & Zhang, Weige, 2019. "Accelerated fading recognition for lithium-ion batteries with Nickel-Cobalt-Manganese cathode using quantile regression method," Applied Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919315284
    DOI: 10.1016/j.apenergy.2019.113841
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919315284
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ng, Selina S.Y. & Xing, Yinjiao & Tsui, Kwok L., 2014. "A naive Bayes model for robust remaining useful life prediction of lithium-ion battery," Applied Energy, Elsevier, vol. 118(C), pages 114-123.
    2. Patil, Meru A. & Tagade, Piyush & Hariharan, Krishnan S. & Kolake, Subramanya M. & Song, Taewon & Yeo, Taejung & Doo, Seokgwang, 2015. "A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation," Applied Energy, Elsevier, vol. 159(C), pages 285-297.
    3. Shengjin Tang & Chuanqiang Yu & Xue Wang & Xiaosong Guo & Xiaosheng Si, 2014. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error," Energies, MDPI, vol. 7(2), pages 1-28, January.
    4. VanDerHorn, Eric & Mahadevan, Sankaran, 2018. "Bayesian model updating with summarized statistical and reliability data," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 12-24.
    5. Cai, Yishan & Yang, Lin & Deng, Zhongwei & Zhao, Xiaowei & Deng, Hao, 2018. "Online identification of lithium-ion battery state-of-health based on fast wavelet transform and cross D-Markov machine," Energy, Elsevier, vol. 147(C), pages 621-635.
    6. Mishra, Madhav & Martinsson, Jesper & Rantatalo, Matti & Goebel, Kai, 2018. "Bayesian hierarchical model-based prognostics for lithium-ion batteries," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 25-35.
    7. Li, Xiang & Ding, Qian & Sun, Jian-Qiao, 2018. "Remaining useful life estimation in prognostics using deep convolution neural networks," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 1-11.
    8. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calum Strange & Shawn Li & Richard Gilchrist & Gonçalo dos Reis, 2021. "Elbows of Internal Resistance Rise Curves in Li-Ion Cells," Energies, MDPI, vol. 14(4), pages 1-15, February.
    2. Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Ke, Yuzhi & Qiu, Zhiqiang & Luo, Jian & Tang, Yong & Wang, Chun & Yuan, Yuhang & Huang, Yao, 2020. "A review on structuralized current collectors for high-performance lithium-ion battery anodes," Applied Energy, Elsevier, vol. 276(C).
    3. Ma, Yan & Li, Jiaqi & Gao, Jinwu & Chen, Hong, 2024. "State of health prediction of lithium-ion batteries under early partial data based on IWOA-BiLSTM with single feature," Energy, Elsevier, vol. 295(C).
    4. Cai, Mingjing & Wang, Jiahua & Liao, Wei-Hsin, 2020. "Self-powered smart watch and wristband enabled by embedded generator," Applied Energy, Elsevier, vol. 263(C).
    5. Sohn, Suyeon & Byun, Ha-Eun & Lee, Jay H., 2022. "Two-stage deep learning for online prediction of knee-point in Li-ion battery capacity degradation," Applied Energy, Elsevier, vol. 328(C).
    6. Su, Xiaojia & Sun, Bingxiang & Wang, Jiaju & Zhang, Weige & Ma, Shichang & He, Xitian & Ruan, Haijun, 2022. "Fast capacity estimation for lithium-ion battery based on online identification of low-frequency electrochemical impedance spectroscopy and Gaussian process regression," Applied Energy, Elsevier, vol. 322(C).
    7. Wang, Cong & Chen, Yunxia, 2024. "Unsupervised dynamic prognostics for abnormal degradation of lithium-ion battery," Applied Energy, Elsevier, vol. 365(C).
    8. Shen, Jiangwei & Ma, Wensai & Xiong, Jian & Shu, Xing & Zhang, Yuanjian & Chen, Zheng & Liu, Yonggang, 2022. "Alternative combined co-estimation of state of charge and capacity for lithium-ion batteries in wide temperature scope," Energy, Elsevier, vol. 244(PB).
    9. Zhao, Guangcai & Kang, Yongzhe & Huang, Peng & Duan, Bin & Zhang, Chenghui, 2023. "Battery health prognostic using efficient and robust aging trajectory matching with ensemble deep transfer learning," Energy, Elsevier, vol. 282(C).
    10. Ma, Jian & Shang, Pengchao & Zou, Xinyu & Ma, Ning & Ding, Yu & Sun, Jinwen & Cheng, Yujie & Tao, Laifa & Lu, Chen & Su, Yuzhuan & Chong, Jin & Jin, Haizu & Lin, Yongshou, 2021. "A hybrid transfer learning scheme for remaining useful life prediction and cycle life test optimization of different formulation Li-ion power batteries," Applied Energy, Elsevier, vol. 282(PA).
    11. Sieg, Johannes & Schmid, Alexander U. & Rau, Laura & Gesterkamp, Andreas & Storch, Mathias & Spier, Bernd & Birke, Kai Peter & Sauer, Dirk Uwe, 2022. "Fast-charging capability of lithium-ion cells: Influence of electrode aging and electrolyte consumption," Applied Energy, Elsevier, vol. 305(C).
    12. Maheshwari, Arpit & Paterakis, Nikolaos G. & Santarelli, Massimo & Gibescu, Madeleine, 2020. "Optimizing the operation of energy storage using a non-linear lithium-ion battery degradation model," Applied Energy, Elsevier, vol. 261(C).
    13. Lee, Jaewook & Lee, Jay H., 2024. "Simultaneous extraction of intra- and inter-cycle features for predicting lithium-ion battery's knees using convolutional and recurrent neural networks," Applied Energy, Elsevier, vol. 356(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Gwan-Soo Park & Hee-Je Kim, 2019. "Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features," Energies, MDPI, vol. 12(22), pages 1-14, November.
    2. Wu, Ji & Zhang, Chenbin & Chen, Zonghai, 2016. "An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks," Applied Energy, Elsevier, vol. 173(C), pages 134-140.
    3. Ma’d El-Dalahmeh & Maher Al-Greer & Mo’ath El-Dalahmeh & Michael Short, 2020. "Time-Frequency Image Analysis and Transfer Learning for Capacity Prediction of Lithium-Ion Batteries," Energies, MDPI, vol. 13(20), pages 1-19, October.
    4. Ding, Pan & Liu, Xiaojuan & Li, Huiqin & Huang, Zequan & Zhang, Ke & Shao, Long & Abedinia, Oveis, 2021. "Useful life prediction based on wavelet packet decomposition and two-dimensional convolutional neural network for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    6. Ma, Guijun & Zhang, Yong & Cheng, Cheng & Zhou, Beitong & Hu, Pengchao & Yuan, Ye, 2019. "Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Jun Peng & Zhiyong Zheng & Xiaoyong Zhang & Kunyuan Deng & Kai Gao & Heng Li & Bin Chen & Yingze Yang & Zhiwu Huang, 2020. "A Data-Driven Method with Feature Enhancement and Adaptive Optimization for Lithium-Ion Battery Remaining Useful Life Prediction," Energies, MDPI, vol. 13(3), pages 1-20, February.
    8. Khaled Akkad & David He, 2023. "A dynamic mode decomposition based deep learning technique for prognostics," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2207-2224, June.
    9. Shuming Wang & Yan-Fu Li & Tong Jia, 2020. "Distributionally Robust Design for Redundancy Allocation," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 620-640, July.
    10. You, Gae-won & Park, Sangdo & Oh, Dukjin, 2016. "Real-time state-of-health estimation for electric vehicle batteries: A data-driven approach," Applied Energy, Elsevier, vol. 176(C), pages 92-103.
    11. Lidang Jiang & Qingsong Huang & Ge He, 2024. "Predicting the Remaining Useful Life of Lithium-Ion Batteries Using 10 Random Data Points and a Flexible Parallel Neural Network," Energies, MDPI, vol. 17(7), pages 1-20, April.
    12. Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    13. Jingxi Yang & Matthew Beatty & Dani Strickland & Mina Abedi-Varnosfaderani & Joe Warren, 2023. "Second-Life Battery Capacity Estimation and Method Comparison," Energies, MDPI, vol. 16(7), pages 1-17, April.
    14. He, Yuxuan & Su, Huai & Zio, Enrico & Peng, Shiliang & Fan, Lin & Yang, Zhaoming & Yang, Zhe & Zhang, Jinjun, 2023. "A systematic method of remaining useful life estimation based on physics-informed graph neural networks with multisensor data," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    16. Chang, Yang & Fang, Huajing & Zhang, Yong, 2017. "A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery," Applied Energy, Elsevier, vol. 206(C), pages 1564-1578.
    17. Liu, Xinyang & Zheng, Zhuoyuan & Büyüktahtakın, İ. Esra & Zhou, Zhi & Wang, Pingfeng, 2021. "Battery asset management with cycle life prognosis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    18. Yu, Jianbo, 2018. "State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 82-95.
    19. Liming Deng & Wenjing Shen & Kangkang Xu & Xuhui Zhang, 2024. "An Adaptive Modeling Method for the Prognostics of Lithium-Ion Batteries on Capacity Degradation and Regeneration," Energies, MDPI, vol. 17(7), pages 1-15, April.
    20. Cai, Yishan & Yang, Lin & Deng, Zhongwei & Zhao, Xiaowei & Deng, Hao, 2018. "Online identification of lithium-ion battery state-of-health based on fast wavelet transform and cross D-Markov machine," Energy, Elsevier, vol. 147(C), pages 621-635.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919315284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.