IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4309-d1466067.html
   My bibliography  Save this article

A Review of Methods of Generating Incremental Capacity–Differential Voltage Curves for Battery Health Determination

Author

Listed:
  • Matthew Beatty

    (Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK)

  • Dani Strickland

    (Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK)

  • Pedro Ferreira

    (Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK)

Abstract

Incremental capacity–differential voltage is a powerful tool for transforming raw voltage data from battery cycling data into curves with distinguishable peaks and valleys. These peaks and valleys have been claimed as useful health features in the literature for providing non-invasive, comprehensive insights into a battery’s health and age. Although extensive studies exist on this topic, no standardized approach for generating these curves has been established. This paper analyzes various calculation methodologies and different post-processing filters employed in the literature. These methods are validated using three datasets: two publicly available datasets from Oxford University and a publication from Nature, along with a dataset collected from Loughborough University. The findings highlight the effectiveness of specific calculation methodologies and filters through the differences in the curves produced. Based on the results and analysis, a recommended operational procedure for generating incremental capacity curves is proposed. This standardized procedure aims to enhance the reliability and consistency of producing incremental capacity curves for state-of-health assessments for batteries.

Suggested Citation

  • Matthew Beatty & Dani Strickland & Pedro Ferreira, 2024. "A Review of Methods of Generating Incremental Capacity–Differential Voltage Curves for Battery Health Determination," Energies, MDPI, vol. 17(17), pages 1-31, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4309-:d:1466067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4309/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4309/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weng, Caihao & Feng, Xuning & Sun, Jing & Peng, Huei, 2016. "State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking," Applied Energy, Elsevier, vol. 180(C), pages 360-368.
    2. Jingxi Yang & Matthew Beatty & Dani Strickland & Mina Abedi-Varnosfaderani & Joe Warren, 2023. "Second-Life Battery Capacity Estimation and Method Comparison," Energies, MDPI, vol. 16(7), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Junwei & Zhang, Weige & Sun, Bingxiang & Zhang, Yanru & Fan, Xinyuan & Zhao, Bo, 2024. "A novel method of battery pack energy health estimation based on visual feature learning," Energy, Elsevier, vol. 293(C).
    2. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
    3. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    4. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    5. Tao, Laifa & Cheng, Yujie & Lu, Chen & Su, Yuzhuan & Chong, Jin & Jin, Haizu & Lin, Yongshou & Noktehdan, Azadeh, 2017. "Lithium-ion battery capacity fading dynamics modelling for formulation optimization: A stochastic approach to accelerate the design process," Applied Energy, Elsevier, vol. 202(C), pages 138-152.
    6. Fu, Shiyi & Tao, Shengyu & Fan, Hongtao & He, Kun & Liu, Xutao & Tao, Yulin & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method," Applied Energy, Elsevier, vol. 353(PA).
    7. Li, Penghua & Zhang, Zijian & Grosu, Radu & Deng, Zhongwei & Hou, Jie & Rong, Yujun & Wu, Rui, 2022. "An end-to-end neural network framework for state-of-health estimation and remaining useful life prediction of electric vehicle lithium batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Qin, Taichun, 2019. "State of health estimation of lithium-ion batteries based on the constant voltage charging curve," Energy, Elsevier, vol. 167(C), pages 661-669.
    9. Harper, Gavin D.J. & Kendrick, Emma & Anderson, Paul A. & Mrozik, Wojciech & Christensen, Paul & Lambert, Simon & Greenwood, David & Das, Prodip K. & Ahmeid, Mohamed & Milojevic, Zoran & Du, Wenjia & , 2023. "Roadmap for a sustainable circular economy in lithium-ion and future battery technologies," LSE Research Online Documents on Economics 118420, London School of Economics and Political Science, LSE Library.
    10. Xuning Feng & Caihao Weng & Xiangming He & Li Wang & Dongsheng Ren & Languang Lu & Xuebing Han & Minggao Ouyang, 2018. "Incremental Capacity Analysis on Commercial Lithium-Ion Batteries using Support Vector Regression: A Parametric Study," Energies, MDPI, vol. 11(9), pages 1-21, September.
    11. Kaizhi Liang & Zhaosheng Zhang & Peng Liu & Zhenpo Wang & Shangfeng Jiang, 2019. "Data-Driven Ohmic Resistance Estimation of Battery Packs for Electric Vehicles," Energies, MDPI, vol. 12(24), pages 1-17, December.
    12. Zheng, Linfeng & Zhu, Jianguo & Lu, Dylan Dah-Chuan & Wang, Guoxiu & He, Tingting, 2018. "Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries," Energy, Elsevier, vol. 150(C), pages 759-769.
    13. Yang, Jufeng & Xia, Bing & Huang, Wenxin & Fu, Yuhong & Mi, Chris, 2018. "Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis," Applied Energy, Elsevier, vol. 212(C), pages 1589-1600.
    14. Berrueta, Alberto & Heck, Michael & Jantsch, Martin & Ursúa, Alfredo & Sanchis, Pablo, 2018. "Combined dynamic programming and region-elimination technique algorithm for optimal sizing and management of lithium-ion batteries for photovoltaic plants," Applied Energy, Elsevier, vol. 228(C), pages 1-11.
    15. Xinwei Sun & Yang Zhang & Yongcheng Zhang & Licheng Wang & Kai Wang, 2023. "Summary of Health-State Estimation of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 16(15), pages 1-19, July.
    16. Li, Xiaoyu & Yuan, Changgui & Li, Xiaohui & Wang, Zhenpo, 2020. "State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression," Energy, Elsevier, vol. 190(C).
    17. Shaofei Qu & Yongzhe Kang & Pingwei Gu & Chenghui Zhang & Bin Duan, 2019. "A Fast Online State of Health Estimation Method for Lithium-Ion Batteries Based on Incremental Capacity Analysis," Energies, MDPI, vol. 12(17), pages 1-11, August.
    18. Jiang, Bo & Dai, Haifeng & Wei, Xuezhe, 2020. "Incremental capacity analysis based adaptive capacity estimation for lithium-ion battery considering charging condition," Applied Energy, Elsevier, vol. 269(C).
    19. Li, Kailing & Xie, Naiming, 2024. "Battery health prognostics based on improved incremental capacity using a hybrid grey modelling and Gaussian process regression," Energy, Elsevier, vol. 303(C).
    20. Lin, Wei-Jen & Chen, Kuo-Ching, 2022. "Evolution of parameters in the Doyle-Fuller-Newman model of cycling lithium ion batteries by multi-objective optimization," Applied Energy, Elsevier, vol. 314(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4309-:d:1466067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.