IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3184-d1113441.html
   My bibliography  Save this article

Structure Optimization of Ensemble Learning Methods and Seasonal Decomposition Approaches to Energy Price Forecasting in Latin America: A Case Study about Mexico

Author

Listed:
  • Anne Carolina Rodrigues Klaar

    (Graduate Program in Education, University of Planalto Catarinense, Lages 88509-900, Brazil)

  • Stefano Frizzo Stefenon

    (Digital Industry Center, Fondazione Bruno Kessler, 38123 Trento, Italy
    Department of Mathematics, Computer Science and Physics, University of Udine, 33100 Udine, Italy)

  • Laio Oriel Seman

    (Graduate Program in Applied Computer Science, University of Vale do Itajai, Itajai 88302-901, Brazil
    Industrial and Systems Engineering Graduate Program, Pontifical Catholic University of Parana, Curitiba 80215-901, Brazil)

  • Viviana Cocco Mariani

    (Mechanical Engineering Graduate Program, Pontifical Catholic University of Parana, Curitiba 80215-901, Brazil
    Department of Electrical Engineering, Federal University of Parana, Curitiba 81530-000, Brazil)

  • Leandro dos Santos Coelho

    (Industrial and Systems Engineering Graduate Program, Pontifical Catholic University of Parana, Curitiba 80215-901, Brazil
    Department of Electrical Engineering, Federal University of Parana, Curitiba 81530-000, Brazil)

Abstract

The energy price influences the interest in investment, which leads to economic development. An estimate of the future energy price can support the planning of industrial expansions and provide information to avoid times of recession. This paper evaluates adaptive boosting (AdaBoost), bootstrap aggregation (bagging), gradient boosting, histogram-based gradient boosting, and random forest ensemble learning models for forecasting energy prices in Latin America, especially in a case study about Mexico. Seasonal decomposition of the time series is used to reduce unrepresentative variations. The Optuna using tree-structured Parzen estimator, optimizes the structure of the ensembles through a voter by combining several ensemble frameworks; thus an optimized hybrid ensemble learning method is proposed. The results show that the proposed method has a higher performance than the state-of-the-art ensemble learning methods, with a mean squared error of 3.37 × 10 − 9 in the testing phase.

Suggested Citation

  • Anne Carolina Rodrigues Klaar & Stefano Frizzo Stefenon & Laio Oriel Seman & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2023. "Structure Optimization of Ensemble Learning Methods and Seasonal Decomposition Approaches to Energy Price Forecasting in Latin America: A Case Study about Mexico," Energies, MDPI, vol. 16(7), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3184-:d:1113441
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3184/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3184/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moshiri, Saeed & Martinez Santillan, Miguel Alfonso, 2018. "The welfare effects of energy price changes due to energy market reform in Mexico," Energy Policy, Elsevier, vol. 113(C), pages 663-672.
    2. Beltrán, Sergio & Castro, Alain & Irizar, Ion & Naveran, Gorka & Yeregui, Imanol, 2022. "Framework for collaborative intelligence in forecasting day-ahead electricity price," Applied Energy, Elsevier, vol. 306(PA).
    3. Diankai Wang & Inna Gryshova & Mykola Kyzym & Tetiana Salashenko & Viktoriia Khaustova & Maryna Shcherbata, 2022. "Electricity Price Instability over Time: Time Series Analysis and Forecasting," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    4. Lehna, Malte & Scheller, Fabian & Herwartz, Helmut, 2022. "Forecasting day-ahead electricity prices: A comparison of time series and neural network models taking external regressors into account," Energy Economics, Elsevier, vol. 106(C).
    5. Alvarez, Jorge & Valencia, Fabian, 2016. "Made in Mexico: Energy reform and manufacturing growth," Energy Economics, Elsevier, vol. 55(C), pages 253-265.
    6. Wei, Jingdong & Zhang, Yao & Wang, Jianxue & Cao, Xiaoyu & Khan, Muhammad Armoghan, 2020. "Multi-period planning of multi-energy microgrid with multi-type uncertainties using chance constrained information gap decision method," Applied Energy, Elsevier, vol. 260(C).
    7. Matheus Henrique Dal Molin Ribeiro & Stéfano Frizzo Stefenon & José Donizetti de Lima & Ademir Nied & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning," Energies, MDPI, vol. 13(19), pages 1-22, October.
    8. Jiang, Ping & Nie, Ying & Wang, Jianzhou & Huang, Xiaojia, 2023. "Multivariable short-term electricity price forecasting using artificial intelligence and multi-input multi-output scheme," Energy Economics, Elsevier, vol. 117(C).
    9. Rainer Baule & Michael Naumann, 2021. "Volatility and Dispersion of Hourly Electricity Contracts on the German Continuous Intraday Market," Energies, MDPI, vol. 14(22), pages 1-24, November.
    10. Stefano Frizzo Stefenon & Laio Oriel Seman & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2023. "Aggregating Prophet and Seasonal Trend Decomposition for Time Series Forecasting of Italian Electricity Spot Prices," Energies, MDPI, vol. 16(3), pages 1-18, January.
    11. Yang, Haolin & Schell, Kristen R., 2022. "GHTnet: Tri-Branch deep learning network for real-time electricity price forecasting," Energy, Elsevier, vol. 238(PC).
    12. Younis M. Nsaif & Molla Shahadat Hossain Lipu & Aini Hussain & Afida Ayob & Yushaizad Yusof & Muhammad Ammirrul A. M. Zainuri, 2022. "A New Voltage Based Fault Detection Technique for Distribution Network Connected to Photovoltaic Sources Using Variational Mode Decomposition Integrated Ensemble Bagged Trees Approach," Energies, MDPI, vol. 15(20), pages 1-20, October.
    13. Roman Rodriguez-Aguilar & Jose Antonio Marmolejo-Saucedo & Brenda Retana-Blanco, 2019. "Prices of Mexican Wholesale Electricity Market: An Application of Alpha-Stable Regression," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Ninno Muniz & Carlos Tavares da Costa Júnior & William Gouvêa Buratto & Ademir Nied & Gabriel Villarrubia González, 2023. "The Sustainability Concept: A Review Focusing on Energy," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    2. Tamás Orosz & Anton Rassõlkin & Pedro Arsénio & Peter Poór & Daniil Valme & Ádám Sleisz, 2024. "Current Challenges in Operation, Performance, and Maintenance of Photovoltaic Panels," Energies, MDPI, vol. 17(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enriquez, Alejandra & Ramirez, Jose Carlos & Rosellon, Juan, 2019. "Costos De Generación, Inversión Y Precios Del Sector Eléctrico En México [Generation Costs, Investment And Prices In The Electricity Sector In Mexico]," MPRA Paper 98084, University Library of Munich, Germany.
    2. Shi, Tao & Li, Chongyang & Zhang, Wei & Zhang, Yi, 2023. "Forecasting on metal resource spot settlement price: New evidence from the machine learning model," Resources Policy, Elsevier, vol. 81(C).
    3. Ramírez, José Carlos & Ortiz-Arango, Francisco & Rosellón, Juan, 2021. "Impact of Mexico's energy reform on consumer welfare," Utilities Policy, Elsevier, vol. 70(C).
    4. Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).
    5. Nina Tsydenova & Alethia Vázquez Morillas & Álvaro Martínez Hernández & Diana Rodríguez Soria & Camilo Wilches & Alexandra Pehlken, 2019. "Feasibility and Barriers for Anaerobic Digestion in Mexico City," Sustainability, MDPI, vol. 11(15), pages 1-21, July.
    6. Marcelle Caroline Thimotheo de Brito & Amaro O. Pereira Junior & Mario Veiga Ferraz Pereira & Julio César Cahuano Simba & Sergio Granville, 2022. "Competitive Behavior of Hydroelectric Power Plants under Uncertainty in Spot Market," Energies, MDPI, vol. 15(19), pages 1-22, October.
    7. Saâdaoui, Foued & Ben Jabeur, Sami, 2023. "Analyzing the influence of geopolitical risks on European power prices using a multiresolution causal neural network," Energy Economics, Elsevier, vol. 124(C).
    8. Chai, Shanglei & Li, Qiang & Abedin, Mohammad Zoynul & Lucey, Brian M., 2024. "Forecasting electricity prices from the state-of-the-art modeling technology and the price determinant perspectives," Research in International Business and Finance, Elsevier, vol. 67(PA).
    9. Zhigang Liu & Jin Wang & Tao Tao & Ziyun Zhang & Siyi Chen & Yang Yi & Shuang Han & Yongqian Liu, 2023. "Wave Power Prediction Based on Seasonal and Trend Decomposition Using Locally Weighted Scatterplot Smoothing and Dual-Channel Seq2Seq Model," Energies, MDPI, vol. 16(22), pages 1-17, November.
    10. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    11. Korrakot Phomsoda & Nattapong Puttanapong & Mongkut Piantanakulchai, 2021. "Economic Impacts of Thailand’s Biofuel Subsidy Reallocation Using a Dynamic Computable General Equilibrium (CGE) Model," Energies, MDPI, vol. 14(8), pages 1-21, April.
    12. Zabaloy, Maria Florencia & Viego, Valentina, 2022. "Household electricity demand in Latin America and the Caribbean: A meta-analysis of price elasticity," Utilities Policy, Elsevier, vol. 75(C).
    13. Cebotari Livia & Paierele Ada, 2024. "Economic Effects of rising Energy Prices," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 295-302.
    14. Andr'es Ram'irez-Hassan & Alejandro L'opez-Vera, 2021. "Semi-parametric estimation of the EASI model: Welfare implications of taxes identifying clusters due to unobserved preference heterogeneity," Papers 2109.07646, arXiv.org.
    15. Cristina Keiko Yamaguchi & Stéfano Frizzo Stefenon & Ney Kassiano Ramos & Vanessa Silva dos Santos & Fernanda Forbici & Anne Carolina Rodrigues Klaar & Fernanda Cristina Silva Ferreira & Alessandra Ca, 2020. "Young People’s Perceptions about the Difficulties of Entrepreneurship and Developing Rural Properties in Family Agriculture," Sustainability, MDPI, vol. 12(21), pages 1-12, October.
    16. Cristina Morel & Ahmad Akrad, 2023. "Open-Circuit Fault Detection and Location in AC - DC - AC Converters Based on Entropy Analysis," Energies, MDPI, vol. 16(4), pages 1-20, February.
    17. Karol Pilot & Alicja Ganczarek-Gamrot & Krzysztof Kania, 2024. "Dealing with Anomalies in Day-Ahead Market Prediction Using Machine Learning Hybrid Model," Energies, MDPI, vol. 17(17), pages 1-20, September.
    18. Zhewei Huang & Yawen Yi, 2024. "Short-Term Load Forecasting for Regional Smart Energy Systems Based on Two-Stage Feature Extraction and Hybrid Inverted Transformer," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    19. Winita Sulandari & Yudho Yudhanto & Sri Subanti & Crisma Devika Setiawan & Riskhia Hapsari & Paulo Canas Rodrigues, 2023. "Comparing the Simple to Complex Automatic Methods with the Ensemble Approach in Forecasting Electrical Time Series Data," Energies, MDPI, vol. 16(22), pages 1-16, November.
    20. Eisner, Anna & Kulmer, Veronika & Kortschak, Dominik, 2021. "Distributional effects of carbon pricing when considering household heterogeneity: An EASI application for Austria," Energy Policy, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3184-:d:1113441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.