IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p664-d1580933.html
   My bibliography  Save this article

A Time Series Decomposition-Based Interpretable Electricity Price Forecasting Method

Author

Listed:
  • Yuanke Cu

    (Guizhou Qianyuan Electric Power Co., Ltd., Guiyang 550002, China)

  • Kaishu Wang

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    Hubei Key Laboratory of Digital River Basin Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
    Institute of Water Resources and Hydropower, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Lechen Zhang

    (China Electric Power Research Institute Co., Ltd., Hangzhou 310030, China)

  • Zixuan Liu

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    Hubei Key Laboratory of Digital River Basin Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
    Institute of Water Resources and Hydropower, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Yixuan Liu

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    Hubei Key Laboratory of Digital River Basin Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
    Institute of Water Resources and Hydropower, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Li Mo

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    Hubei Key Laboratory of Digital River Basin Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
    Institute of Water Resources and Hydropower, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

Electricity price forecasting is of significant practical importance, and improving prediction accuracy has become a key area of focus. Although substantial progress has been made in electricity price forecasting research, the unique characteristics of the electricity market make prices highly sensitive to even minor market changes. This results in prices exhibiting long-term trends while also experiencing sharp fluctuations due to sudden events, often leading to extreme values. Furthermore, most current models are “black-box” models, lacking transparency and interpretability. These unique features make electricity price forecasting particularly complex and challenging. This paper introduces a forecasting framework that incorporates the Seasonal Trend decomposition using Loess (STL), Gated Recurrent Unit (GRU), Light Gradient Boosting Machine (LightGBM), and Shapley Additive Explanations (SHAPs) and applies it to forecasting in the electricity markets of the United States and Australia. The proposed forecasting framework significantly improves prediction accuracy compared to nine other baseline models, especially in terms of RMSE and R 2 metrics, while also providing clear insights into the factors influencing the forecasts. On the U.S. dataset, the RMSE of this framework is 12.7% lower than that of the second-best model, while, on the Australian dataset, the RMSE of the SLGSEF is 2.58% lower than that of the second-best model.

Suggested Citation

  • Yuanke Cu & Kaishu Wang & Lechen Zhang & Zixuan Liu & Yixuan Liu & Li Mo, 2025. "A Time Series Decomposition-Based Interpretable Electricity Price Forecasting Method," Energies, MDPI, vol. 18(3), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:664-:d:1580933
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/664/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/664/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Jinliang & Tan, Zhongfu & Wei, Yiming, 2020. "An adaptive hybrid model for short term electricity price forecasting," Applied Energy, Elsevier, vol. 258(C).
    2. Sulandari, Winita & Subanar, & Lee, Muhammad Hisyam & Rodrigues, Paulo Canas, 2020. "Indonesian electricity load forecasting using singular spectrum analysis, fuzzy systems and neural networks," Energy, Elsevier, vol. 190(C).
    3. Zhang, Jinliang & Wei, Yiming & Tan, Zhongfu, 2020. "An adaptive hybrid model for short term wind speed forecasting," Energy, Elsevier, vol. 190(C).
    4. Stefano Frizzo Stefenon & Laio Oriel Seman & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2023. "Aggregating Prophet and Seasonal Trend Decomposition for Time Series Forecasting of Italian Electricity Spot Prices," Energies, MDPI, vol. 16(3), pages 1-18, January.
    5. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Andrei V. Chukalin & Vladimir N. Klyachkin & Vladimir P. Tabakov & Denis A. Demidov, 2024. "Applied Machine Learning to Study the Movement of Air Masses in the Wind Farm Area," Energies, MDPI, vol. 17(16), pages 1-27, August.
    6. Loizidis, Stylianos & Kyprianou, Andreas & Georghiou, George E., 2024. "Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets," Applied Energy, Elsevier, vol. 363(C).
    7. Yang, Wendong & Sun, Shaolong & Hao, Yan & Wang, Shouyang, 2022. "A novel machine learning-based electricity price forecasting model based on optimal model selection strategy," Energy, Elsevier, vol. 238(PC).
    8. Dash, Ganesh & Paul, Justin, 2021. "CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasnain Iftikhar & Josue E. Turpo-Chaparro & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Forecasting Day-Ahead Electricity Prices for the Italian Electricity Market Using a New Decomposition—Combination Technique," Energies, MDPI, vol. 16(18), pages 1-23, September.
    2. Meng, Anbo & Wang, Peng & Zhai, Guangsong & Zeng, Cong & Chen, Shun & Yang, Xiaoyi & Yin, Hao, 2022. "Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization," Energy, Elsevier, vol. 254(PA).
    3. AL-Alimi, Dalal & AlRassas, Ayman Mutahar & Al-qaness, Mohammed A.A. & Cai, Zhihua & Aseeri, Ahmad O. & Abd Elaziz, Mohamed & Ewees, Ahmed A., 2023. "TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets," Applied Energy, Elsevier, vol. 343(C).
    4. Fang Guo & Shangyun Deng & Weijia Zheng & An Wen & Jinfeng Du & Guangshan Huang & Ruiyang Wang, 2022. "Short-Term Electricity Price Forecasting Based on the Two-Layer VMD Decomposition Technique and SSA-LSTM," Energies, MDPI, vol. 15(22), pages 1-20, November.
    5. Acikgoz, Hakan & Budak, Umit & Korkmaz, Deniz & Yildiz, Ceyhun, 2021. "WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network," Energy, Elsevier, vol. 233(C).
    6. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    7. Banaś, Jan & Utnik-Banaś, Katarzyna, 2021. "Evaluating a seasonal autoregressive moving average model with an exogenous variable for short-term timber price forecasting," Forest Policy and Economics, Elsevier, vol. 131(C).
    8. Jiang, Ping & Liu, Zhenkun & Wang, Jianzhou & Zhang, Lifang, 2021. "Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm," Resources Policy, Elsevier, vol. 73(C).
    9. Ershen Wang & Caimiao Sun & Chuanyun Wang & Pingping Qu & Yufeng Huang & Tao Pang, 2021. "A satellite selection algorithm based on adaptive simulated annealing particle swarm optimization for the BeiDou Navigation Satellite System/Global Positioning System receiver," International Journal of Distributed Sensor Networks, , vol. 17(7), pages 15501477211, July.
    10. Lu, Xin & Qiu, Jing & Lei, Gang & Zhu, Jianguo, 2022. "Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia," Applied Energy, Elsevier, vol. 308(C).
    11. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    12. Zhao, Xinyu & Bai, Mingliang & Yang, Xusheng & Liu, Jinfu & Yu, Daren & Chang, Juntao, 2021. "Short-term probabilistic predictions of wind multi-parameter based on one-dimensional convolutional neural network with attention mechanism and multivariate copula distribution estimation," Energy, Elsevier, vol. 234(C).
    13. Yang, Weifei & Xiao, Changlai & Zhang, Zhihao & Liang, Xiujuan, 2022. "Identification of the formation temperature field of the southern Songliao Basin, China based on a deep belief network," Renewable Energy, Elsevier, vol. 182(C), pages 32-42.
    14. Matheus Henrique Dal Molin Ribeiro & Stéfano Frizzo Stefenon & José Donizetti de Lima & Ademir Nied & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning," Energies, MDPI, vol. 13(19), pages 1-22, October.
    15. Heydari, Azim & Majidi Nezhad, Meysam & Pirshayan, Elmira & Astiaso Garcia, Davide & Keynia, Farshid & De Santoli, Livio, 2020. "Short-term electricity price and load forecasting in isolated power grids based on composite neural network and gravitational search optimization algorithm," Applied Energy, Elsevier, vol. 277(C).
    16. Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).
    17. Hong, Ying-Yi & Satriani, Thursy Rienda Aulia, 2020. "Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network," Energy, Elsevier, vol. 209(C).
    18. Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).
    19. Wang, Xuguang & Li, Xiao & Su, Jie, 2023. "Distribution drift-adaptive short-term wind speed forecasting," Energy, Elsevier, vol. 273(C).
    20. Dorel Mihai Paraschiv & Narciz Balasoiu & Souhir Ben-Amor & Raul Cristian Bag, 2023. "Hybridising Neurofuzzy Model the Seasonal Autoregressive Models for Electricity Price Forecasting on Germany’s Spot Market," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(63), pages 463-463, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:664-:d:1580933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.