IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2272-d538408.html
   My bibliography  Save this article

Economic Impacts of Thailand’s Biofuel Subsidy Reallocation Using a Dynamic Computable General Equilibrium (CGE) Model

Author

Listed:
  • Korrakot Phomsoda

    (School of Civil Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12120, Thailand)

  • Nattapong Puttanapong

    (Faculty of Economics, Thammasat University, Bangkok 10200, Thailand)

  • Mongkut Piantanakulchai

    (School of Civil Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12120, Thailand)

Abstract

For two decades, the Thai government has been promoting ethanol and biodiesel consumption through tax measures and price subsidies. Although this policy has substantially increased the consumption and production of biofuels, there is concern regarding its future fiscal burden. Due to fiscal constraints, the Thai government has planned to completely terminate the biofuel subsidy by 2022. This study aims at examining the economy-wide impacts of removing the biofuel subsidy and also conducting simulations of alternative scenarios, i.e., improving the yield of energy crops and reallocating the burden to expand capital investment in energy crop plantations. A recursive dynamic computable general equilibrium (CGE) model was used as the main quantitative method to conduct four simulation scenarios. This model was validated by comparing the simulation results with the actual 2015–2019 data and showed low values of root mean square error (RMSE). The simulation results indicate that solely terminating the price subsidy would lead to economy-wide contraction. Meanwhile, eliminating the price subsidy along with influencing crop yield improvement and expanding capital investment in energy crop plantations would lead to the lowest negative impacts. Therefore, the termination of the price subsidy should be simultaneously implemented with supply-side expansions.

Suggested Citation

  • Korrakot Phomsoda & Nattapong Puttanapong & Mongkut Piantanakulchai, 2021. "Economic Impacts of Thailand’s Biofuel Subsidy Reallocation Using a Dynamic Computable General Equilibrium (CGE) Model," Energies, MDPI, vol. 14(8), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2272-:d:538408
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2272/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2272/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moshiri, Saeed & Martinez Santillan, Miguel Alfonso, 2018. "The welfare effects of energy price changes due to energy market reform in Mexico," Energy Policy, Elsevier, vol. 113(C), pages 663-672.
    2. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    3. Peter Warr & Waleerat Suphannachart, 2021. "Agricultural Productivity Growth and Poverty Reduction: Evidence from Thailand," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(2), pages 525-546, June.
    4. Aune, Finn Roar & Grimsrud, Kristine & Lindholt, Lars & Rosendahl, Knut Einar & Storrøsten, Halvor Briseid, 2017. "Oil consumption subsidy removal in OPEC and other Non-OECD countries: Oil market impacts and welfare effects," Energy Economics, Elsevier, vol. 68(C), pages 395-409.
    5. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    6. Bhattacharyya, Ranajoy & Ganguly, Amrita, 2017. "Cross subsidy removal in electricity pricing in India," Energy Policy, Elsevier, vol. 100(C), pages 181-190.
    7. Bretschger, Lucas & Zhang, Lin, 2017. "Carbon policy in a high-growth economy: The case of China," Resource and Energy Economics, Elsevier, vol. 47(C), pages 1-19.
    8. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    9. Karydas, Christos & Zhang, Lin, 2019. "Green tax reform, endogenous innovation and the growth dividend," Journal of Environmental Economics and Management, Elsevier, vol. 97(C), pages 158-181.
    10. Lin, Boqiang & Jiang, Zhujun, 2011. "Estimates of energy subsidies in China and impact of energy subsidy reform," Energy Economics, Elsevier, vol. 33(2), pages 273-283, March.
    11. Kaenchan, Piyanon & Puttanapong, Nattapong & Bowonthumrongchai, Thongchart & Limskul, Kitti & Gheewala, Shabbir H., 2019. "Macroeconomic modeling for assessing sustainability of bioethanol production in Thailand," Energy Policy, Elsevier, vol. 127(C), pages 361-373.
    12. Wang, Yanxiang & Ali Almazrooei, Shaikha & Kapsalyamova, Zhanna & Diabat, Ali & Tsai, I-Tsung, 2016. "Utility subsidy reform in Abu Dhabi: A review and a Computable General Equilibrium analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1352-1362.
    13. Acharya, Rajesh H. & Sadath, Anver C., 2017. "Implications of energy subsidy reform in India," Energy Policy, Elsevier, vol. 102(C), pages 453-462.
    14. Asian Development Bank (ADB) & Asian Development Bank (ADB) & Asian Development Bank (ADB) & Asian Development Bank (ADB), 2015. "Fossil Fuel Subsidies in Thailand: Trends, Impacts, and Reforms," ADB Reports RPT157695-2, Asian Development Bank (ADB).
    15. Bretschger, Lucas & Ramer, Roger & Schwark, Florentine, 2011. "Growth effects of carbon policies: Applying a fully dynamic CGE model with heterogeneous capital," Resource and Energy Economics, Elsevier, vol. 33(4), pages 963-980.
    16. Lin, Boqiang & Li, Aijun, 2012. "Impacts of removing fossil fuel subsidies on China: How large and how to mitigate?," Energy, Elsevier, vol. 44(1), pages 741-749.
    17. Bazilian, Morgan & Onyeji, Ijeoma, 2012. "Fossil fuel subsidy removal and inadequate public power supply: Implications for businesses," Energy Policy, Elsevier, vol. 45(C), pages 1-5.
    18. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    19. Sébastien Mary & Euan Phimister & Deborah Roberts & Fabien Santini, 2019. "A Monte Carlo filtering application for systematic sensitivity analysis of computable general equilibrium results," Economic Systems Research, Taylor & Francis Journals, vol. 31(3), pages 404-422, July.
    20. Henseler, Martin & Maisonnave, Helene, 2018. "Low world oil prices: A chance to reform fuel subsidies and promote public transport? A case study for South Africa," Transportation Research Part A: Policy and Practice, Elsevier, vol. 108(C), pages 45-62.
    21. Nobuhiro Hosoe & Kenji Gasawa & Hideo Hashimoto, 2010. "Textbook of Computable General Equilibrium Modelling," Palgrave Macmillan Books, Palgrave Macmillan, number 978-0-230-28165-3, December.
    22. Djoni Hartono & Ahmad Komarulzaman & Tony Irawan & Anda Nugroho, 2020. "Phasing out Energy Subsidies to Improve Energy Mix: A Dead End," Energies, MDPI, vol. 13(9), pages 1-15, May.
    23. Liu, Wei & Li, Hong, 2011. "Improving energy consumption structure: A comprehensive assessment of fossil energy subsidies reform in China," Energy Policy, Elsevier, vol. 39(7), pages 4134-4143, July.
    24. Solaymani, Saeed & Kari, Fatimah, 2014. "Impacts of energy subsidy reform on the Malaysian economy and transportation sector," Energy Policy, Elsevier, vol. 70(C), pages 115-125.
    25. Koesler, Simon & Pothen, Frank, 2013. "The Basic WIOD CGE Model: A computable general equilibrium model based on the World Input-Output Database," ZEW Dokumentationen 13-04, ZEW - Leibniz Centre for European Economic Research.
    26. Wesseh, Presley K. & Lin, Boqiang & Atsagli, Philip, 2016. "Environmental and welfare assessment of fossil-fuels subsidies removal: A computable general equilibrium analysis for Ghana," Energy, Elsevier, vol. 116(P1), pages 1172-1179.
    27. Clemens Breisinger & Wilfried Engelke & Olivier Ecker, 2012. "Leveraging Fuel Subsidy Reform for Transition in Yemen," Sustainability, MDPI, vol. 4(11), pages 1-26, October.
    28. Antoine Belgodere & Charles Vellutini, 2011. "Identifying key elasticities in a CGE model: a Monte Carlo approach," Applied Economics Letters, Taylor & Francis Journals, vol. 18(17), pages 1619-1622.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piyanon Haputta & Thongchart Bowonthumrongchai & Nattapong Puttanapong & Shabbir H. Gheewala, 2022. "Effects of Biofuel Crop Expansion on Green Gross Domestic Product," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    2. Pan, Yuling & Dong, Feng, 2023. "Green finance policy coupling effect of fossil energy use rights trading and renewable energy certificates trading on low carbon economy: Taking China as an example," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 658-679.
    3. Korrakot Phomsoda & Nattapong Puttanapong & Mongkut Piantanakulchai, 2021. "Assessing Economic Impacts of Thailand’s Fiscal Reallocation between Biofuel Subsidy and Transportation Investment: Application of Recursive Dynamic General Equilibrium Model," Energies, MDPI, vol. 14(14), pages 1-32, July.
    4. Zeng, Lijun & Zhang, Wencheng & Zhao, Yue & Zhang, Jinsuo & Jiang, Xiujuan, 2024. "Simulation analysis of Chinese new-type urbanization policy in mineral resource abundant regions based on the CGE model," Resources Policy, Elsevier, vol. 90(C).
    5. Proque, Andressa Lemes & Betarelli Junior, Admir Antonio & Perobelli, Fernando Salgueiro, 2022. "Fuel tax, cross subsidy and transport: Assessing the effects on income and consumption distribution in Brazil," Research in Transportation Economics, Elsevier, vol. 95(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Djoni Hartono & Ahmad Komarulzaman & Tony Irawan & Anda Nugroho, 2020. "Phasing out Energy Subsidies to Improve Energy Mix: A Dead End," Energies, MDPI, vol. 13(9), pages 1-15, May.
    2. Korrakot Phomsoda & Nattapong Puttanapong & Mongkut Piantanakulchai, 2021. "Assessing Economic Impacts of Thailand’s Fiscal Reallocation between Biofuel Subsidy and Transportation Investment: Application of Recursive Dynamic General Equilibrium Model," Energies, MDPI, vol. 14(14), pages 1-32, July.
    3. Aiman Albatayneh & Adel Juaidi & Francisco Manzano-Agugliaro, 2023. "The Negative Impact of Electrical Energy Subsidies on the Energy Consumption—Case Study from Jordan," Energies, MDPI, vol. 16(2), pages 1-17, January.
    4. Bretschger, Lucas & Lechthaler, Filippo & Rausch, Sebastian & Zhang, Lin, 2017. "Knowledge diffusion, endogenous growth, and the costs of global climate policy," European Economic Review, Elsevier, vol. 93(C), pages 47-72.
    5. Solaymani, Saeed & Kari, Fatimah, 2014. "Impacts of energy subsidy reform on the Malaysian economy and transportation sector," Energy Policy, Elsevier, vol. 70(C), pages 115-125.
    6. Lucas Bretschger & Matthias Leuthard & Alena Miftakhova, 2024. "Boosting Sluggish Climate Policy: Endogenous Substitution, Learning, and Energy Efficiency Improvements," CER-ETH Economics working paper series 24/391, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    7. Acharya, Rajesh H. & Sadath, Anver C., 2017. "Implications of energy subsidy reform in India," Energy Policy, Elsevier, vol. 102(C), pages 453-462.
    8. Saeed Solaymani, 2016. "Impacts of energy subsidy reform on poverty and income inequality in Malaysia," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(6), pages 2707-2723, November.
    9. Xu, Shang & Zhang, Jun, 2023. "The welfare impacts of removing coal subsidies in rural China," Energy Economics, Elsevier, vol. 118(C).
    10. Cameron Hepburn & Jacquelyn Pless & David Popp, 2018. "Policy Brief—Encouraging Innovation that Protects Environmental Systems: Five Policy Proposals," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 154-169.
    11. Zhao, Xu & Luo, Dongkun & Lu, Kun & Wang, Xiaoyu & Dahl, Carol, 2019. "How the removal of producer subsidies influences oil and gas extraction: A case study in the Gulf of Mexico," Energy, Elsevier, vol. 166(C), pages 1000-1012.
    12. Zahra Zarepour, 2022. "Short- and long-run macroeconomic impacts of the 2010 Iranian energy subsidy reform," SN Business & Economics, Springer, vol. 2(10), pages 1-32, October.
    13. Daneshzand, Farzaneh & Asali, Mehdi & Al-Sobhi, Saad A. & Diabat, Ali & Elkamel, Ali, 2022. "A simulation-based optimization scheme for phase-out of natural gas subsidies considering welfare and economic measures," Energy, Elsevier, vol. 259(C).
    14. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2023. "Green technologies, interdependencies, and policy," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    15. Aryanpur, Vahid & Fattahi, Mahshid & Mamipour, Siab & Ghahremani, Mahsa & Gallachóir, Brian Ó & Bazilian, Morgan D. & Glynn, James, 2022. "How energy subsidy reform can drive the Iranian power sector towards a low-carbon future," Energy Policy, Elsevier, vol. 169(C).
    16. Pu, Lei & Wang, Xiuhui & Tan, Zhongfu & Wang, Huaqing & Yang, JiaCheng & Wu, Jing, 2020. "Is China's electricity price cross-subsidy policy reasonable? Comparative analysis of eastern, central, and western regions," Energy Policy, Elsevier, vol. 138(C).
    17. Boudekhdekh, Karim, 2022. "A comparative analysis of energy subsidy in the MENA region," MPRA Paper 115275, University Library of Munich, Germany.
    18. Li, Ke & Lin, Boqiang, 2015. "How does administrative pricing affect energy consumption and CO2 emissions in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 952-962.
    19. Raphael Calel, 2020. "Adopt or Innovate: Understanding Technological Responses to Cap-and-Trade," American Economic Journal: Economic Policy, American Economic Association, vol. 12(3), pages 170-201, August.
    20. Nicolo Barbieri & Alberto Marzucchi & Ugo Rizzo, 2021. "Green technologies, complementarities, and policy," SPRU Working Paper Series 2021-08, SPRU - Science Policy Research Unit, University of Sussex Business School.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2272-:d:538408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.