IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3075-d1109659.html
   My bibliography  Save this article

Dynamic Simulations on Enhanced Heat Recovery Using Heat Exchange PCM Fluid for Solar Collector

Author

Listed:
  • Yawen Ren

    (Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan)

  • Hironao Ogura

    (Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan)

Abstract

Facing the goal of carbon neutrality, energy supply chains should be more low-carbon and flexible. A solar chemical heat pump (SCHP) is a potential system for achieving this goal. Our previous studies developed a silicone-oil-based phase-change material (PCM) mixture as a PCM fluid for enhancing heat recovery above 373 K in the solar collector (SC) of the SCHP. The PCM fluid was previously tested to confirm its dispersity and flow properties. The present study proposed a 3D computational fluid dynamics model to simulate the closed circulation loop between the SC and reactor using the PCM fluid. The recovered heat in the SC was studied using several flow rates, as well as the PCM weight fraction of the PCM fluid. Furthermore, the net transportable energy is considered to evaluate the ratio of recovered heat and relative circulation power. As a result, it was verified that the recovered heat of the SC in the experiment and simulation is consistent. The total recovered heat is improved using the PCM fluid. A lower flow rate can enhance the PCM melting mass and the recovered heat although sensible heat amount increases with the flow rate. The best flow rate was 1 L/min when the SC area is 1 m 2 . Furthermore, the higher PCM content has higher latent heat. On the other hand, the lower content PCM can increase the temperature difference between the SC inlet and outlet because of the lower PCM heat capacity. For the 1 L/min flow rate, 2 wt% PCM fluid has shorter heat-storing time and larger net transportable energy than 0 wt% PCM fluid (426 kJ←403 kJ) for the SCHP unit.

Suggested Citation

  • Yawen Ren & Hironao Ogura, 2023. "Dynamic Simulations on Enhanced Heat Recovery Using Heat Exchange PCM Fluid for Solar Collector," Energies, MDPI, vol. 16(7), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3075-:d:1109659
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3075/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3075/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gunjo, Dawit Gudeta & Jena, Smruti Ranjan & Mahanta, Pinakeswar & Robi, P.S., 2018. "Melting enhancement of a latent heat storage with dispersed Cu, CuO and Al2O3 nanoparticles for solar thermal application," Renewable Energy, Elsevier, vol. 121(C), pages 652-665.
    2. LanXin Lai & Toshio Imai & Motohiro Umezu & Mamoru Ishii & Hironao Ogura, 2020. "Possibility of Calcium Oxide from Natural Limestone Including Impurities for Chemical Heat Pump," Energies, MDPI, vol. 13(4), pages 1-14, February.
    3. Ogura, Hironao & Yamamoto, Tetsuya & Kage, Hiroyuki, 2003. "Efficiencies of CaO/H2O/Ca(OH)2 chemical heat pump for heat storing and heating/cooling," Energy, Elsevier, vol. 28(14), pages 1479-1493.
    4. Choi, Jong Chan & Kim, Sang Done, 1995. "Heat transfer in a latent heat-storage system using MgCl2·6H2O at the melting point," Energy, Elsevier, vol. 20(1), pages 13-25.
    5. Ling, Ziye & Wen, Xiaoyan & Zhang, Zhengguo & Fang, Xiaoming & Gao, Xuenong, 2018. "Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures," Energy, Elsevier, vol. 144(C), pages 977-983.
    6. Zauner, Christoph & Hengstberger, Florian & Etzel, Mark & Lager, Daniel & Hofmann, Rene & Walter, Heimo, 2016. "Experimental characterization and simulation of a fin-tube latent heat storage using high density polyethylene as PCM," Applied Energy, Elsevier, vol. 179(C), pages 237-246.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Igor Maciejewski & Sebastian Pecolt & Andrzej Błażejewski & Bartosz Jereczek & Tomasz Krzyzynski, 2024. "Experimental Study of the Energy Regenerated by a Horizontal Seat Suspension System under Random Vibration," Energies, MDPI, vol. 17(17), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nagel, Thomas & Beckert, Steffen & Lehmann, Christoph & Gläser, Roger & Kolditz, Olaf, 2016. "Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds—A review," Applied Energy, Elsevier, vol. 178(C), pages 323-345.
    2. Tunçbilek, Kadir & Sari, Ahmet & Tarhan, Sefa & Ergüneş, Gazanfer & Kaygusuz, Kamil, 2005. "Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications," Energy, Elsevier, vol. 30(5), pages 677-692.
    3. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    4. Liu, Yongjie & Huang, Zhiwu & Wu, Yue & Yan, Lisen & Jiang, Fu & Peng, Jun, 2022. "An online hybrid estimation method for core temperature of Lithium-ion battery with model noise compensation," Applied Energy, Elsevier, vol. 327(C).
    5. Ma, Ying & Wei, Rongrong & Zuo, Hongyan & Zuo, Qingsong & Luo, Xiaoyu & Chen, Ying & Wu, Shuying & Chen, Wei, 2024. "N-doped EG@MOFs derived porous carbon composite phase change materials for thermal optimization of Li-ion batteries at low temperature," Energy, Elsevier, vol. 286(C).
    6. Zhao, C.Y. & Tao, Y.B. & Yu, Y.S., 2022. "Thermal conductivity enhancement of phase change material with charged nanoparticle: A molecular dynamics simulation," Energy, Elsevier, vol. 242(C).
    7. Hong Shi & Mengmeng Cheng & Yi Feng & Chenghui Qiu & Caiyue Song & Nenglin Yuan & Chuanzhi Kang & Kaijie Yang & Jie Yuan & Yonghao Li, 2023. "Thermal Management Techniques for Lithium-Ion Batteries Based on Phase Change Materials: A Systematic Review and Prospective Recommendations," Energies, MDPI, vol. 16(2), pages 1-23, January.
    8. Kumar, Ashish & Saha, Sandip K., 2020. "Experimental and numerical study of latent heat thermal energy storage with high porosity metal matrix under intermittent heat loads," Applied Energy, Elsevier, vol. 263(C).
    9. Cao, Jiahao & He, Yangjing & Feng, Jinxin & Lin, Shao & Ling, Ziye & Zhang, Zhengguo & Fang, Xiaoming, 2020. "Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge," Applied Energy, Elsevier, vol. 279(C).
    10. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    11. Meng, Z.N. & Zhang, P., 2017. "Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM," Applied Energy, Elsevier, vol. 190(C), pages 524-539.
    12. Fan, Zhaohui & Gao, Renjing & Liu, Shutian, 2022. "Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface," Energy, Elsevier, vol. 259(C).
    13. Wenwen Ye & Dourna Jamshideasli & Jay M. Khodadadi, 2023. "Improved Performance of Latent Heat Energy Storage Systems in Response to Utilization of High Thermal Conductivity Fins," Energies, MDPI, vol. 16(3), pages 1-83, January.
    14. Zichen, Wang & Changqing, Du, 2021. "A comprehensive review on thermal management systems for power lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    15. Parsazadeh, Mohammad & Duan, Xili, 2018. "Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit," Applied Energy, Elsevier, vol. 216(C), pages 142-156.
    16. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    17. Mohamed, Shamseldin A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Zahir, Md. Hasan & Al-Ahmed, Amir & Saidur, R. & Yılbaş, B.S. & Sahin, A.Z., 2017. "A review on current status and challenges of inorganic phase change materials for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1072-1089.
    18. Park, Jinsoo & Choi, Sung Ho & Karng, Sarng Woo, 2021. "Cascaded latent thermal energy storage using a charging control method," Energy, Elsevier, vol. 215(PA).
    19. Bogdan Diaconu & Mihai Cruceru & Lucica Anghelescu & Cristinel Racoceanu & Cristinel Popescu & Marian Ionescu & Adriana Tudorache, 2023. "Latent Heat Storage Systems for Thermal Management of Electric Vehicle Batteries: Thermal Performance Enhancement and Modulation of the Phase Transition Process Dynamics: A Literature Review," Energies, MDPI, vol. 16(6), pages 1-46, March.
    20. Mastronardo, E. & Bonaccorsi, L. & Kato, Y. & Piperopoulos, E. & Milone, C., 2016. "Efficiency improvement of heat storage materials for MgO/H2O/Mg(OH)2 chemical heat pumps," Applied Energy, Elsevier, vol. 162(C), pages 31-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3075-:d:1109659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.