IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i10d10.1007_s10668-021-01267-6.html
   My bibliography  Save this article

Efficient monitoring and control of wind energy conversion systems using Internet of things (IoT): a comprehensive review

Author

Listed:
  • Shivaji Karad

    (NITTTR)

  • Ritula Thakur

    (NITTTR)

Abstract

The necessity of making smart devices, intelligent processing and informative communication has taken the Internet of things (IoT) to a new level. Various industries have been implementing IoT-based services to increase the throughput as well as for information management and analysis. Such IoT-based systems with the use of cloud computing and big data analytics are now approaching toward the field of wind energy, one of the most promising, environment friendly and clean renewable energy sources. In the scenario of the competitive energy market, productivity, efficiency, operating costs and profitability are of prime importance. All these parameters demand a system with the ability to continuously monitor and maintain high performance over the time. That is where Internet of Things (IoT) analytics is seen as a significant technology trend for the sustainable growth of renewable energy sector. This paper discusses the recent trends and use of IoT in energy generation, specifically in relation to wind energy generation. This paper explored various areas of IoT application with respect to WT system such as IoT integration with energy generation system, IoT in wind turbine monitoring and control, maintenance and prediction systems. The prime contribution of this review paper is that it summarizes the current state of the art of IoT-based applications in the wind energy conversion systems.

Suggested Citation

  • Shivaji Karad & Ritula Thakur, 2021. "Efficient monitoring and control of wind energy conversion systems using Internet of things (IoT): a comprehensive review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14197-14214, October.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:10:d:10.1007_s10668-021-01267-6
    DOI: 10.1007/s10668-021-01267-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01267-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01267-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
    2. Qian, Peng & Zhang, Dahai & Tian, Xiange & Si, Yulin & Li, Liangbi, 2019. "A novel wind turbine condition monitoring method based on cloud computing," Renewable Energy, Elsevier, vol. 135(C), pages 390-398.
    3. Naser Hossein Motlagh & Mahsa Mohammadrezaei & Julian Hunt & Behnam Zakeri, 2020. "Internet of Things (IoT) and the Energy Sector," Energies, MDPI, vol. 13(2), pages 1-27, January.
    4. Bahram Shakerighadi & Amjad Anvari-Moghaddam & Juan C. Vasquez & Josep M. Guerrero, 2018. "Internet of Things for Modern Energy Systems: State-of-the-Art, Challenges, and Open Issues," Energies, MDPI, vol. 11(5), pages 1-23, May.
    5. Bhuiyan, M.M. & Billah, M.M., 2013. "Wind turbine monitoring system using wireless sensor networks," Journal of the Bangladesh Agricultural University, Bangladesh Agricultural University Research System (BAURES), vol. 11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Santhi Mary Antony & D. Godwin Immanuel, 2022. "Implementation of self-regulating controller for integrating DFIG-based grid system with load interruption," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8485-8503, June.
    2. Alsagr, Naif & Ozturk, Ilhan, 2024. "How do energy security risk and ICT affect green investment?," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 1044-1055.
    3. Popkova, Elena G. & Bogoviz, Aleksei V. & Lobova, Svetlana V. & DeLo, Piper & Alekseev, Alexander N. & Sergi, Bruno S., 2023. "Environmentally sustainable policies in the petroleum sector through the lens of industry 4.0. Russians Lukoil and Gazprom: The COVID-19 crisis of 2020 vs sanctions crisis of 2022," Resources Policy, Elsevier, vol. 84(C).
    4. M. Bradha & Nagaraj Balakrishnan & A. Suvitha & T. Arumanayagam & M. Rekha & P. Vivek & P. Ajay & V. Sangeetha & Ananth Steephen, 2022. "Experimental, computational analysis of Butein and Lanceoletin for natural dye-sensitized solar cells and stabilizing efficiency by IoT," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8807-8822, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akhil Joseph & Patil Balachandra, 2020. "Energy Internet, the Future Electricity System: Overview, Concept, Model Structure, and Mechanism," Energies, MDPI, vol. 13(16), pages 1-26, August.
    2. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    3. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    4. Wu, Ying & Wu, Yanpeng & Guerrero, Josep M. & Vasquez, Juan C., 2021. "A comprehensive overview of framework for developing sustainable energy internet: From things-based energy network to services-based management system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Mir Hamid Taghavi & Peyman Akhavan & Rouhollah Ahmadi & Ali Bonyadi Naeini, 2022. "Identifying Key Components in Implementation of Internet of Energy (IoE) in Iran with a Combined Approach of Meta-Synthesis and Structural Analysis: A Systematic Review," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    6. Aleksander Jakimowicz, 2022. "The Energy Transition as a Super Wicked Problem: The Energy Sector in the Era of Prosumer Capitalism," Energies, MDPI, vol. 15(23), pages 1-31, December.
    7. Ruiming, Fang & Minling, Wu & xinhua, Guo & Rongyan, Shang & Pengfei, Shao, 2020. "Identifying early defects of wind turbine based on SCADA data and dynamical network marker," Renewable Energy, Elsevier, vol. 154(C), pages 625-635.
    8. Giovanni Rinaldi & Philipp R. Thies & Lars Johanning, 2021. "Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    9. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    10. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    11. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    12. Matteo Vaccargiu & Andrea Pinna & Roberto Tonelli & Luisanna Cocco, 2023. "Blockchain in the Energy Sector for SDG Achievement," Sustainability, MDPI, vol. 15(20), pages 1-23, October.
    13. Arkaitz Rabanal & Alain Ulazia & Gabriel Ibarra-Berastegi & Jon Sáenz & Unai Elosegui, 2018. "MIDAS: A Benchmarking Multi-Criteria Method for the Identification of Defective Anemometers in Wind Farms," Energies, MDPI, vol. 12(1), pages 1-19, December.
    14. Athanasios Tsipis & Asterios Papamichail & Ioannis Angelis & George Koufoudakis & Georgios Tsoumanis & Konstantinos Oikonomou, 2020. "An Alertness-Adjustable Cloud/Fog IoT Solution for Timely Environmental Monitoring Based on Wildfire Risk Forecasting," Energies, MDPI, vol. 13(14), pages 1-35, July.
    15. Abdul Hasib Siddique & Mehedi Hasan & Sharnali Islam & Khalid Rashid, 2021. "Prospective Smart Distribution Substation in Bangladesh: Modeling and Analysis," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    16. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
    17. Qian, Peng & Feng, Bo & Liu, Hao & Tian, Xiange & Si, Yulin & Zhang, Dahai, 2019. "Review on configuration and control methods of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 125-139.
    18. Hosseini Dehshiri, Seyyed Jalaladdin & Amiri, Maghsoud, 2023. "Evaluating the risks of the internet of things in renewable energy systems using a hybrid fuzzy decision approach," Energy, Elsevier, vol. 285(C).
    19. Przemyslaw Baranski & Piotr Pietrzak, 2016. "Computational Effective Fault Detection by Means of Signature Functions," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-20, March.
    20. Germán Arana-Landín & Naiara Uriarte-Gallastegi & Beñat Landeta-Manzano & Iker Laskurain-Iturbe, 2023. "The Contribution of Lean Management—Industry 4.0 Technologies to Improving Energy Efficiency," Energies, MDPI, vol. 16(5), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:10:d:10.1007_s10668-021-01267-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.