IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p8162-d1149258.html
   My bibliography  Save this article

A Hybrid Photovoltaic/Diesel System for Off-Grid Applications in Lubumbashi, DR Congo: A HOMER Pro Modeling and Optimization Study

Author

Listed:
  • Ilunga Kajila Rice

    (School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Hanhua Zhu

    (School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Cunquan Zhang

    (School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Arnauld Robert Tapa

    (Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China)

Abstract

In Lubumbashi, the capital of Haut Katanga in the Democratic Republic of the Congo (DR Congo), diesel power plants are a common source of electricity. The need to utilize local renewable energy sources in DR Congo has increased due to the unreliability of the state grid and the rising cost of running diesel generators. Solar photovoltaic (PV) panels and batteries, in particular, have recently recorded significant price drops. It is important for operators and suppliers to choose optimal generators together with a renewable energy system to lessen the energy deficit. Diesel generators are still widely used in DRC, but their efficiency pales in contrast to that of more recent power facilities. Consuming fossil fuels results in high expenses for upkeep and operation, in addition to severe environmental damage. This study assessed the feasibility of using local weather and technical data to evaluate the efficiency of a diesel power plant hybridized with a PV system. The Hybrid Optimization Model for Electric Renewable (HOMER) simulations suggest that the hybrid system schedule is preferable due to its many economic and environmental advantages for the local community and its inhabitants. The promotion of such a hybrid system may encourage the sustainable economic development of a stable source of electricity for the Congo Region.

Suggested Citation

  • Ilunga Kajila Rice & Hanhua Zhu & Cunquan Zhang & Arnauld Robert Tapa, 2023. "A Hybrid Photovoltaic/Diesel System for Off-Grid Applications in Lubumbashi, DR Congo: A HOMER Pro Modeling and Optimization Study," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8162-:d:1149258
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/8162/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/8162/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Hassan, Mohammad Yusri, 2013. "Process integration of hybrid power systems with energy losses considerations," Energy, Elsevier, vol. 55(C), pages 38-45.
    2. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    3. Wadim Strielkowski & Anna Sherstobitova & Patrik Rovny & Tatiana Evteeva, 2021. "Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review," Energies, MDPI, vol. 14(11), pages 1-19, May.
    4. Mohammed H. Alsharif, 2017. "A Solar Energy Solution for Sustainable Third Generation Mobile Networks," Energies, MDPI, vol. 10(4), pages 1-17, March.
    5. Bhattacharya, Mita & Paramati, Sudharshan Reddy & Ozturk, Ilhan & Bhattacharya, Sankar, 2016. "The effect of renewable energy consumption on economic growth: Evidence from top 38 countries," Applied Energy, Elsevier, vol. 162(C), pages 733-741.
    6. Aliashim Albani & Mohd Zamri Ibrahim & Che Mohd Imran Che Taib & Abd Aziz Azlina, 2017. "The Optimal Generation Cost-Based Tariff Rates for Onshore Wind Energy in Malaysia," Energies, MDPI, vol. 10(8), pages 1-16, July.
    7. Ana Rita Silva & Ana Estanqueiro, 2022. "From Wind to Hybrid: A Contribution to the Optimal Design of Utility-Scale Hybrid Power Plants," Energies, MDPI, vol. 15(7), pages 1-19, April.
    8. Peter Ozaveshe Oviroh & Tien-Chien Jen, 2018. "The Energy Cost Analysis of Hybrid Systems and Diesel Generators in Powering Selected Base Transceiver Station Locations in Nigeria," Energies, MDPI, vol. 11(3), pages 1-20, March.
    9. Stylianos A. Papazis, 2022. "Integrated Economic Optimization of Hybrid Thermosolar Concentrating System Based on Exact Mathematical Method," Energies, MDPI, vol. 15(19), pages 1-22, September.
    10. Tsuanyo, David & Azoumah, Yao & Aussel, Didier & Neveu, Pierre, 2015. "Modeling and optimization of batteryless hybrid PV (photovoltaic)/Diesel systems for off-grid applications," Energy, Elsevier, vol. 86(C), pages 152-163.
    11. Mohamed, Ahmed M.A. & Al-Habaibeh, Amin & Abdo, Hafez, 2013. "An investigation into the current utilisation and prospective of renewable energy resources and technologies in Libya," Renewable Energy, Elsevier, vol. 50(C), pages 732-740.
    12. Yasir Basheer & Asad Waqar & Saeed Mian Qaisar & Toqeer Ahmed & Nasim Ullah & Sattam Alotaibi, 2022. "Analyzing the Prospect of Hybrid Energy in the Cement Industry of Pakistan, Using HOMER Pro," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    13. Mohammed H. Alsharif, 2017. "Comparative Analysis of Solar-Powered Base Stations for Green Mobile Networks," Energies, MDPI, vol. 10(8), pages 1-25, August.
    14. Tang, Chor Foon & Aviral Kumar, Tiwari & Shahbaz, Muhammad, 2016. "Dynamic Inter-relationships among tourism, economic growth and energy consumption in India," MPRA Paper 69848, University Library of Munich, Germany, revised 04 Mar 2016.
    15. Javier Iñigo-Labairu & Jürgen Dersch & Luca Schomaker, 2022. "Integration of CSP and PV Power Plants: Investigations about Synergies by Close Coupling," Energies, MDPI, vol. 15(19), pages 1-17, September.
    16. Kishan Veerashekar & Halil Askan & Matthias Luther, 2020. "Qualitative and Quantitative Transient Stability Assessment of Stand-Alone Hybrid Microgrids in a Cluster Environment," Energies, MDPI, vol. 13(5), pages 1-43, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Onur Turan & Ali Durusu & Recep Yumurtaci, 2023. "Driving Urban Energy Sustainability: A Techno-Economic Perspective on Nanogrid Solutions," Energies, MDPI, vol. 16(24), pages 1-30, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Aqil Afham Rahmat & Ag Sufiyan Abd Hamid & Yuanshen Lu & Muhammad Amir Aziat Ishak & Shaikh Zishan Suheel & Ahmad Fazlizan & Adnan Ibrahim, 2022. "An Analysis of Renewable Energy Technology Integration Investments in Malaysia Using HOMER Pro," Sustainability, MDPI, vol. 14(20), pages 1-24, October.
    2. Peter Ozaveshe Oviroh & Tien-Chien Jen, 2018. "The Energy Cost Analysis of Hybrid Systems and Diesel Generators in Powering Selected Base Transceiver Station Locations in Nigeria," Energies, MDPI, vol. 11(3), pages 1-20, March.
    3. Dogan, Eyup & Altinoz, Buket & Madaleno, Mara & Taskin, Dilvin, 2020. "The impact of renewable energy consumption to economic growth: A replication and extension of Inglesi-Lotz (2016)," Energy Economics, Elsevier, vol. 90(C).
    4. Mohammed W. Baidas & Mastoura F. Almusailem & Rashad M. Kamel & Sultan Sh. Alanzi, 2022. "Renewable-Energy-Powered Cellular Base-Stations in Kuwait’s Rural Areas," Energies, MDPI, vol. 15(7), pages 1-29, March.
    5. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    6. Irfan Ullah Munir & Shen Yue & Abdelmohsen A. Nassani & Muhammad Moinuddin Qazi Abro & Shabir Hyder & Khalid Zaman, 2021. "Structural changes, financial and business regulatory measures, energy and tourism demand: Evidence from group of seven countries," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2198-2218, April.
    7. Deevela, Niranjan Rao & Singh, Bhim & Kandpal, Tara C., 2023. "Optimization and economic analysis of solar PV based hybrid system for powering Base Transceiver Stations in India," Energy, Elsevier, vol. 283(C).
    8. Dufo-López, Rodolfo & Cristóbal-Monreal, Iván R. & Yusta, José M., 2016. "Stochastic-heuristic methodology for the optimisation of components and control variables of PV-wind-diesel-battery stand-alone systems," Renewable Energy, Elsevier, vol. 99(C), pages 919-935.
    9. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    10. Cuesta, M.A. & Castillo-Calzadilla, T. & Borges, C.E., 2020. "A critical analysis on hybrid renewable energy modeling tools: An emerging opportunity to include social indicators to optimise systems in small communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    11. Maël Riou & Florian Dupriez-Robin & Dominique Grondin & Christophe Le Loup & Michel Benne & Quoc T. Tran, 2021. "Multi-Objective Optimization of Autonomous Microgrids with Reliability Consideration," Energies, MDPI, vol. 14(15), pages 1-20, July.
    12. Villanthenkodath, Muhammed Ashiq & Mahalik, Mantu Kumar, 2021. "Does economic growth respond to electricity consumption asymmetrically in Bangladesh? The implication for environmental sustainability," Energy, Elsevier, vol. 233(C).
    13. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    14. Hosein Mohammadi & Sayed Saghaian & Bahareh Zandi Dareh Gharibi, 2023. "Renewable and Non-Renewable Energy Consumption and Its Impact on Economic Growth," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    15. Beretta, Gian Paolo & Iora, Paolo & Ghoniem, Ahmed F., 2014. "Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?," Energy, Elsevier, vol. 78(C), pages 587-603.
    16. Panagiotis Trivellas & Georgios Malindretos & Panagiotis Reklitis, 2020. "Implications of Green Logistics Management on Sustainable Business and Supply Chain Performance: Evidence from a Survey in the Greek Agri-Food Sector," Sustainability, MDPI, vol. 12(24), pages 1-29, December.
    17. Ostadzad, Ali Hossein, 2022. "Innovation and carbon emissions: Fixed-effects panel threshold model estimation for renewable energy," Renewable Energy, Elsevier, vol. 198(C), pages 602-617.
    18. Okumus, Fevzi & Kocak, Emrah, 2023. "Tourism and economic output: Do asymmetries matter?," Annals of Tourism Research, Elsevier, vol. 100(C).
    19. Wei Wang & Kehui Wei & Oleksandr Kubatko & Vladyslav Piven & Yulija Chortok & Oleksandr Derykolenko, 2023. "Economic Growth and Sustainable Transition: Investigating Classical and Novel Factors in Developed Countries," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    20. Muhammad Khalid Anser & Zahid Yousaf & Usama Awan & Abdelmohsen A. Nassani & Muhammad Moinuddin Qazi Abro & Khalid Zaman, 2020. "Identifying the Carbon Emissions Damage to International Tourism: Turn a Blind Eye," Sustainability, MDPI, vol. 12(5), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8162-:d:1149258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.