IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3102-d181786.html
   My bibliography  Save this article

Internet of Things Platform for Energy Management in Multi-Microgrid System to Improve Neutral Current Compensation

Author

Listed:
  • Mojtaba Moghimi

    (Queensland Micro- and Nano Centre, Griffith University, Brisbane, QLD 4111, Australia)

  • Jiannan Liu

    (Queensland Micro- and Nano Centre, Griffith University, Brisbane, QLD 4111, Australia)

  • Pouya Jamborsalamati

    (School of Engineering, Macquarie University, Sydney, NSW 2109, Australia)

  • Fida Hasan Md Rafi

    (Network Development Department, ElectraNet, Adelaide, SA 5000, Australia)

  • Shihanur Rahman

    (National Planning Department, AEMO, Melbourne, VIC 3000, Australia)

  • Jahangir Hossain

    (School of Engineering, Macquarie University, Sydney, NSW 2109, Australia)

  • Sascha Stegen

    (Queensland Micro- and Nano Centre, Griffith University, Brisbane, QLD 4111, Australia)

  • Junwei Lu

    (Queensland Micro- and Nano Centre, Griffith University, Brisbane, QLD 4111, Australia)

Abstract

In this paper, an Internet of Things (IoT) platform is proposed for Multi-Microgrid (MMG) system to improve unbalance compensation functionality employing three-phase four-leg (3P-4L) voltage source inverters (VSIs). The two level communication system connects the MMG system, implemented in Power System Computer Aided Design (PSCAD), to the cloud server. The local communication level utilizes Modbus Transmission Control Protocol/Internet Protocol (TCP/IP) and Message Queuing Telemetry Transport (MQTT) is used as the protocol for global communication level. A communication operation algorithm is developed to manage the communication operation under various communication failure scenarios. To test the communication system, it is implemented on an experimental testbed to investigate its functionality for MMG neutral current compensation (NCC). To compensate the neutral current in MMG, a dynamic NCC algorithm is proposed, which enables the MGs to further improve the NCC by sharing their data using the IoT platform. The performance of the control and communication system using dynamic NCC is compared with the fixed capacity NCC for unbalance compensation under different communication failure conditions. The impact of the communication system performance on the NCC sharing is the focus of this research. The results show that the proposed system provides better neutral current compensation and phase balancing in case of MMG operation by sharing the data effectively even if the communication system is failing partially.

Suggested Citation

  • Mojtaba Moghimi & Jiannan Liu & Pouya Jamborsalamati & Fida Hasan Md Rafi & Shihanur Rahman & Jahangir Hossain & Sascha Stegen & Junwei Lu, 2018. "Internet of Things Platform for Energy Management in Multi-Microgrid System to Improve Neutral Current Compensation," Energies, MDPI, vol. 11(11), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3102-:d:181786
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3102/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Babak Arbab-Zavar & Emilio J. Palacios-Garcia & Juan C. Vasquez & Josep M. Guerrero, 2021. "Message Queuing Telemetry Transport Communication Infrastructure for Grid-Connected AC Microgrids Management," Energies, MDPI, vol. 14(18), pages 1-31, September.
    2. Restrepo, Mauricio & Cañizares, Claudio A. & Simpson-Porco, John W. & Su, Peter & Taruc, John, 2021. "Optimization- and Rule-based Energy Management Systems at the Canadian Renewable Energy Laboratory microgrid facility," Applied Energy, Elsevier, vol. 290(C).
    3. Maria G. Ioannides & Elias B. Koukoutsis & Anastasios P. Stamelos & Stylianos A. Papazis & Erofili E. Stamataki & Athanasios Papoutsidakis & Vasilios Vikentios & Nikolaos Apostolakis & Michael E. Stam, 2023. "Design and Operation of Internet of Things-Based Monitoring Control System for Induction Machines," Energies, MDPI, vol. 16(7), pages 1-22, March.
    4. Isaías González & Antonio José Calderón & José María Portalo, 2021. "Innovative Multi-Layered Architecture for Heterogeneous Automation and Monitoring Systems: Application Case of a Photovoltaic Smart Microgrid," Sustainability, MDPI, vol. 13(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3102-:d:181786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.