Methane/Ammonia Radical Formation during High Temperature Reactions in Swirl Burners
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Siddiqui, O. & Dincer, I., 2019. "Experimental investigation and assessment of direct ammonia fuel cells utilizing alkaline molten and solid electrolytes," Energy, Elsevier, vol. 169(C), pages 914-923.
- Honzawa, Takafumi & Kai, Reo & Okada, Akiko & Valera-Medina, Agustin & Bowen, Philip J. & Kurose, Ryoichi, 2019. "Predictions of NO and CO emissions in ammonia/methane/air combustion by LES using a non-adiabatic flamelet generated manifold," Energy, Elsevier, vol. 186(C).
- Valera-Medina, Agustin & Marsh, Richard & Runyon, Jon & Pugh, Daniel & Beasley, Paul & Hughes, Timothy & Bowen, Phil, 2017. "Ammonia–methane combustion in tangential swirl burners for gas turbine power generation," Applied Energy, Elsevier, vol. 185(P2), pages 1362-1371.
- Marco-Osvaldo Vigueras-Zuniga & Maria-Elena Tejeda-del-Cueto & José-Alejandro Vasquez-Santacruz & Agustín-Leobardo Herrera-May & Agustin Valera-Medina, 2020. "Numerical Predictions of a Swirl Combustor Using Complex Chemistry Fueled with Ammonia/Hydrogen Blends," Energies, MDPI, vol. 13(2), pages 1-17, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Marwan Abdullah & Thibault F. Guiberti & Radi A. Alsulami, 2023. "Experimental Assessment on the Coupling Effect of Mixing Length and Methane-Ammonia Blends on Flame Stability and Emissions," Energies, MDPI, vol. 16(7), pages 1-12, March.
- Pashchenko, Dmitry, 2024. "Ammonia fired gas turbines: Recent advances and future perspectives," Energy, Elsevier, vol. 290(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Joanna Jójka & Rafał Ślefarski, 2021. "Emission Characteristics for Swirl Methane–Air Premixed Flames with Ammonia Addition," Energies, MDPI, vol. 14(3), pages 1-19, January.
- Wu, Fang-Hsien & Chen, Guan-Bang, 2020. "Numerical study of hydrogen peroxide enhancement of ammonia premixed flames," Energy, Elsevier, vol. 209(C).
- Chai, Wai Siong & Bao, Yulei & Jin, Pengfei & Tang, Guang & Zhou, Lei, 2021. "A review on ammonia, ammonia-hydrogen and ammonia-methane fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Cai, Tao & Zhao, Dan & Chan, Siew Hwa & Shahsavari, Mohammad, 2022. "Tailoring reduced mechanisms for predicting flame propagation and ignition characteristics in ammonia and ammonia/hydrogen mixtures," Energy, Elsevier, vol. 260(C).
- Al-Hamed, Khaled H.M. & Dincer, Ibrahim, 2021. "A novel ammonia solid oxide fuel cell-based powering system with on-board hydrogen production for clean locomotives," Energy, Elsevier, vol. 220(C).
- Jin, Yating & Cao, Junyuan & Liu, Yunpeng & Gao, Yi & Yan, Yingwen, 2024. "CO formation characteristics in a centrally staged swirl combustor," Energy, Elsevier, vol. 307(C).
- Sun, Yuze & Rao, Zhuming & Zhao, Dan & Wang, Bing & Sun, Dakun & Sun, Xiaofeng, 2020. "Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor," Applied Energy, Elsevier, vol. 264(C).
- Sorrentino, Giancarlo & Sabia, Pino & Bozza, Pio & Ragucci, Raffaele & de Joannon, Mara, 2019. "Low-NOx conversion of pure ammonia in a cyclonic burner under locally diluted and preheated conditions," Applied Energy, Elsevier, vol. 254(C).
- Donato Cecere & Matteo Cimini & Simone Carpenella & Jan Caldarelli & Eugenio Giacomazzi, 2024. "Composition and Injection Angle Effects on Combustion of an NH 3 /H 2 /N 2 Jet in an Air Crossflow," Energies, MDPI, vol. 17(20), pages 1-21, October.
- Marco-Osvaldo Vigueras-Zuniga & Maria-Elena Tejeda-del-Cueto & José-Alejandro Vasquez-Santacruz & Agustín-Leobardo Herrera-May & Agustin Valera-Medina, 2020. "Numerical Predictions of a Swirl Combustor Using Complex Chemistry Fueled with Ammonia/Hydrogen Blends," Energies, MDPI, vol. 13(2), pages 1-17, January.
- Muhammad Aziz & Agung Tri Wijayanta & Asep Bayu Dani Nandiyanto, 2020. "Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization," Energies, MDPI, vol. 13(12), pages 1-25, June.
- Mashruk, Syed & Kovaleva, Marina & Alnasif, Ali & Chong, Cheng Tung & Hayakawa, Akihiro & Okafor, Ekenechukwu C. & Valera-Medina, Agustin, 2022. "Nitrogen oxide emissions analyses in ammonia/hydrogen/air premixed swirling flames," Energy, Elsevier, vol. 260(C).
- Namsu Kim & Minjung Lee & Juwon Park & Jeongje Park & Taesong Lee, 2022. "A Comparative Study of NO x Emission Characteristics in a Fuel Staging and Air Staging Combustor Fueled with Partially Cracked Ammonia," Energies, MDPI, vol. 15(24), pages 1-15, December.
- Zhao, He & Li, Guoneng & Zhao, Dan & Zhang, Zhiguo & Sun, Dakun & Yang, Wenming & Li, Shen & Lu, Zhengli & Zheng, Youqu, 2017. "Experimental study of equivalence ratio and fuel flow rate effects on nonlinear thermoacoustic instability in a swirl combustor," Applied Energy, Elsevier, vol. 208(C), pages 123-131.
- Cai, Lei & He, Tianzhi & Xiang, Yanlei & Guan, Yanwen, 2020. "Study on the reaction pathways of steam methane reforming for H2 production," Energy, Elsevier, vol. 207(C).
- Al-Hamed, K.H.M. & Dincer, Ibrahim, 2020. "A novel ammonia molten alkaline fuel cell based integrated powering system for clean rail transportation," Energy, Elsevier, vol. 201(C).
- Nguyen Van Duc Long & Le Cao Nhien & Moonyong Lee, 2023. "Advanced Technologies in Hydrogen Revolution," Energies, MDPI, vol. 16(5), pages 1-4, February.
- Skabelund, Brent B. & Stechel, Ellen B. & Milcarek, Ryan J., 2023. "Thermodynamic analysis of a gas turbine utilizing ternary CH4/H2/NH3 fuel blends," Energy, Elsevier, vol. 282(C).
- Al-attab, K.A. & Zainal, Z.A., 2018. "Micro gas turbine running on naturally aspirated syngas: An experimental investigation," Renewable Energy, Elsevier, vol. 119(C), pages 210-216.
- Milana Guteša Božo & Agustin Valera-Medina, 2020. "Prediction of Novel Humified Gas Turbine Cycle Parameters for Ammonia/Hydrogen Fuels," Energies, MDPI, vol. 13(21), pages 1-20, November.
More about this item
Keywords
ammonia; hydrogen; combustion; methane; radicals; chemiluminescence; CFD;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6624-:d:655705. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.